如何进行兴趣偏好标签的计算呢?

先看计算逻辑总体概览,主要分为了三部分:互动行为、互动深度、权重

1. 互动行为

确定哪些用户行为要纳入到兴趣标签的计算中。

通常在电商中,使用的比较多的就是:浏览、加购、下单。有这些行为,往往反映出用户对该品类有较强的兴趣。

另外,搜索行为也是很能反映用户偏好的,但由于搜索词涉及大量NLP的内容,在做标签的计算中,比较耗时费力,在精度要求没有那么高的时候,可以先不考虑搜索行为。

2. 互动深度

所谓的互动深度,指的是用户在每种互动行为下,有哪些具体的内容可以衡量用户行为的深度情况。

不然容易出现这种情况:用户只是对某个类目下的某个商品有超强偏好,但是最终计算结果却是该用户对整个类目都有兴趣。用互动深度,能降低异常情况带来的影响。

使用了三个指标来反映用户的行为深度:涉及三级类目数、涉及sku数、购买件数。

3. 权重设置

权重部分很重要。这是为了将不同行为对最终结果的贡献,进行合理差异化。

也比较容易理解,肯定是下单说明用户更感兴趣嘛,毕竟能真掏钱的才是真爱。所以在权重大小上,也是下单>加购>浏览。
全部评论

相关推荐

不愿透露姓名的神秘牛友
07-29 14:13
点赞 评论 收藏
分享
评论
1
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务