题解报告`欧拉回路 (欧拉回路) 8/6

以下是我今天解题的题解报告:


[1] 欧拉回路
题目描述:
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0
解释见代码


#include <iostream>
#include <cstdio>
#include <algorithm> 
#include <cstring>
#include <vector>
#include <cmath>
#include <queue>
#include <stack> 
#define ll long long
#define maxn 1000+10
using namespace std;
int n,m;
int fa[maxn];
int degree[maxn];
int ans;
 
int findset(int i){  //并查集找根节点
	if(fa[i]==-1) return i;	
	else return fa[i]=findset(fa[i]);
	
}
 
int main(){
	while(scanf("%d",&n)&&n){
		scanf("%d",&m);
		memset(degree,0,sizeof(degree));
		memset(fa,-1,sizeof(fa));
		for(int i=1;i<=m;i++){
			int u,v;
			scanf("%d%d",&u,&v);
			degree[u]++;
			degree[v]++;  //记录度
			u=findset(u);
			v=findset(v);
			if(u!=v){
				fa[u]=v;   //添加
			}
		}
		ans=0;
		for(int i=1;i<=n;i++){
			if(findset(i)==i) ans++;    //寻找连通分量的个数,若大于1,肯定不存在欧拉回路
		}
		if(ans>1){ printf("0\n");continue;}
		ans=0;  //记录奇度点的个数
		for(int i=1;i<=n;i++){
			if(degree[i]%2) ans++;
		}
		if(ans!=0) printf("0\n");
		else printf("1\n");
	}
	return 0;
}
全部评论

相关推荐

昨天 16:10
门头沟学院 Java
连笔试都没有就直接挂了&nbsp;这是学历厂吗两段大厂实习一段中厂一点机会都没有吗真的很难绷
xiaolihuam...:校招挂了,然后反手给我捞了个社招
投递虾皮信息等公司10个岗位
点赞 评论 收藏
分享
陆续:不可思议 竟然没那就话 那就我来吧 :你是我在牛客见到的最美的女孩
点赞 评论 收藏
分享
不愿透露姓名的神秘牛友
今天 12:06
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务