滴滴内推,滴滴内推码

1.自我介绍

2.项目拷打

3.GMP模型,线程和协程的区别

4.当程序有很多goroutine时,他怎么调度执行切换

5.GC详细解释混合写屏障

6.100个协程依次打印1-100

7.defer执行顺序

8.defer可以修改返回值吗

9.哪些异常不会被recover

10.子协程为什么推荐要加一个recover

11.tcp四次挥手

12.为什么要time wait,时间多长

13.服务器上如果有很多time wait如何解决,以及出现这个问题的场景有哪些

14.服务器cpu占用过高如何去定位,如何发现和判断死锁发生的位置

15.http和https的区别,TLS过程

16.cookie和session区别

17.用jwt如何实现服务端禁止用户登陆

18.mysql慢查询优化,分库分表问题

19.分布式锁,redlock

二、滴滴2026届校招正式启动啦! 已投递提前批且流程结束的同学,可投递正式批

【热招岗位】工程(客户端&前端)/算法/机器人

【其他岗位】工程(后端&质量&系统)/数据/安全技术/效能管理/商业分析/金融业务/产品/运营/专业职能

投递要求 :2025年9月~2026年8月之间毕业的海内外高校毕业生,每人可投递1个岗位

【工作地点】北京/杭州/上海/广州等

【招聘流程】

简历投递(即日起)-在线笔试(8月下旬起,部分岗位需要)-面试(8月下旬起)-录用意向书发放-Offer发放

【内推链接】https://app.mokahr.com/m/campus_apply/didiglobal/96064?recommendCode=DSv5C4QW&hash=%23%2Fjobs#/jobs

【内推码】

DSv5C4QW(内推简历优先筛选~)投递后可评论留言姓名缩写+岗位(ljh+研发),后台跟进,能捞就捞

引流:字节跳动,海康威视,深信服,腾讯,阿里巴巴,拼多多,滴滴,京东,小米,大疆,美团,好未来,小红书,华为,简历,offer,面试,面经,三方,国企,央企,秋招,应届生,求职,比亚迪,建设银行,工商银行,百度,中兴,邮储、中行、建行、工行、建行、光大、招商银行、科大讯飞、蔚来、新华三、京东方、容知日新、长鑫存储、阳光电源、中国移动、中国电信、中国联通,中兴,虾皮,网易,腾讯音乐,京东,虎牙,b站,bigo,思科,亚马逊,荣耀,小米,联想,tplink,第四范式,米哈游,携程,旷视,美的,索尼,OPPO,满帮,momenta,欢聚,shein,用友,哈啰,vivo,完美世界,地平线,爱奇艺,汇顶,得物,深睿医疗,全志科技,禾赛,唯品会,度小满,蔚来

全部评论

相关推荐

最终还是婉拒了小红书的offer,厚着脸皮回了字节。其实这次字节不管是组内的氛围、HR的沟通体验,都比之前好太多,开的薪资也还算过得去,这些都是让我下定决心的原因之一。但最核心的,还是抵不住对Agent的兴趣,选择了Ai Coding这么一个方向。因为很多大佬讲过,在未来比较火的还是属于那些更加垂类的Agent,而Ai Coding恰好是Coding Agent这么一个领域,本质上还是程序员群体和泛程序员群体这个圈子的。目前也已经在提前实习,也是全栈这么一个岗位。就像最近阿里P10针对前端后端等等不再那么区分,确实在Agent方向不太区分这个。尤其是我们自己做AI Coding的内容,基本上90%左右的内容都是AI生成的,AI代码仓库贡献率也是我们的指标之一。有人说他不好用,那肯定是用的姿态不太对。基本上用对Skill、Rules 加上比较好的大模型基本都能Cover你的大部分需求,更别说Claude、Cursor这种目前看来Top水准的Coding工具了(叠甲:起码在我看来是这样)。所以不太区分的主要原因,还是针对一些例如Claude Code、Cursor、Trae、Codex、CC等一大堆,他们有很多新的概念和架构提出,我们往往需要快速验证(MVP版本)来看效果。而全栈就是这么快速验证的一个手段,加上Ai Coding的辅助,目前看起来问题不大(仅仅针对Agent而言)。而且Coding的产品形态往往是一个Plugin、Cli之类的,本质还是属于大前端领域。不过针对业务后端来看,区分还是有必要的。大家很多人也说Agent不就是Prompt提示词工程么?是的没错,本质上还是提示词。不过现在也衍生出一个新的Context Eneering,抽象成一种架构思想(类比框架、或者你们业务架构,参考商品有商品发布架构来提效)。本质还是提示词,但是就是能否最大化利用整个上下文窗口来提升效果,这个还是有很多探索空间和玩法的,例如Cursor的思想:上下文万物皆文件, CoWork之类的。后续也有一些Ralph Loop啥的,还有Coding里面的Coding Act姿态。这种才是比较核心的点,而不是你让AI生成的那提示词,然后调用了一下大模型那么简单;也不是dify、LangGraph搭建了一套workflow,从一个node走到另外一个node那么简单。Agent和WorkFLow还是两回事,大部分人也没能很好的区分这一点。不过很多人说AI泡沫啥啥啥的,我们ld也常把这句话挂在嘴边:“说AI泡沫还是太大了”诸如此类。我觉得在AI的时代,懂一点还是会好一点,所以润去字节了。目前的实习生活呢,除了修一些Tools的问题,还包括对比Claude、Cursor、Trae在某些源码实现思想上的点,看看能不能迁移过来,感觉还是比较有意思。不过目前组内还是主要Follow比较多,希望下一个阶段就做一些更有创新的事情哈哈。这就是一个牛马大学生的最终牧场,希望能好好的吧。说不定下次发的时候,正式AI泡沫结束,然后我又回归传统后端这么一个结局了。欢迎交流👏,有不对的🙅不要骂博主(浅薄的认知),可以私聊交流
码农索隆:和优秀的人,做有挑战的事
点赞 评论 收藏
分享
评论
点赞
1
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务