题解 | #小美的区间异或和#

小美的区间异或和

https://ac.nowcoder.com/acm/problem/259733

读题,可以发现题目要求的是所有的数对的xor值的贡献之和。那么这里的贡献是什么呢? 注意所有连续子数组,其实可以等价于找到两个数字,然后分别向左边和右边扩展后得到的区间,在这些区间里,我们找到的这对数字是可以为答案做出贡献的。 假设我们的数组是1-下标的,我们找到的第一个数字下标为l,第二个数字下标为r,那么这对数字对于答案的贡献就是。 那么为了计算这个答案,可能会想到用

for (int i = 1; i < n + 1; i ++) {
  for (int j = i + 1; j < n + 1; j ++) {
    ans += i * (n - j + 1) * a[i] ^ a[j];
  }
}

来计算,但这样显然不能通过n = 1e5 的测试。可以发现,其实每个j都是可以预先计算出来的,也很容易做到增加和删除,可以在读入的时候直接把j加入数组记录,删除的时候也可以直接删除某一个j的值,这些都很方便。这样可以优化上述公式里计算j的部分。 那对于公式里异或的计算,可以按位考虑,把j直接记录进每一位上,这样可以通过遍历每一位来快速计算异或值。

void solve() {
    int n;
    std::cin >> n;
    std::vector<int> v(n), nums(33);
    for (int i = 0; i < n; i ++ ) {
        std::cin >> v[i];
        for (int j = 0; j < 33; j ++ ) {
            if (v[i] >> j & 1 ) {
                nums[j] += n - i;
            }
        }
    }

    int now = n;

    i64 ans = 0;

    const int P = 1e9 + 7;

    for (int i = 0; i < n; i ++ ) {
        now --;
        for (int j = 0; j < 33; j ++ ) {
            if (v[i] >> j & 1) {
                nums[j] -= n - i;
                ans += (1LL << j) * ((now + 1) * now / 2 - nums[j]) % P * (i + 1) % P;
            } else {
                ans += (1LL << j) * nums[j] % P * (i + 1) % P;
            }
            ans %= P;
        }
    }
    std::cout << ans << "\n";
}
全部评论

相关推荐

敢逐云霄志:你打招呼语怎么能这么长,hr都没看下去的欲望,简明扼要说重点,就读于某某学校某某专业,26届应届毕业生,学信网可查,先后在某某公司实习过(如有),然后做过什么项目,想找一份什么样的工作,可实习几个月以上,期待您的回复。
点赞 评论 收藏
分享
评论
1
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务