蚂蚁重庆搜索推荐实习一面

#实习##蚂蚁##算法#电话面试,光速下班。
答出来的不说了。两个没答出来的。
1)设计损失函数,让第一大的预测结果和第二大的预测结果差值最大化
    直接回答的loss加一个-(first - second),似乎不被接受。请教了一下AI,它提出了一些可能的方法:
    penalty = torch.clamp(margin - (first - second )
    contrast_loss = 1 / (first - second + 1e-6)  => 距离度量形式进行了改编
    rank_loss = F.relu(margin-(first - second)) => 基于ReLU的设计,和1差不多
        
2)KMEANS聚类的时候,如果先验的已知某些结点不是一类,应该怎么做
    step1:对于这个策略,我们可以手动选择聚类中心,确保已知的不应属于同一类的点(例如点A, B, C)从一开始就被分配到不同的聚类中。初始的簇中心点一定满足要求。
    step2:执行KMEANS常规的聚类过程。并且检查特定点是否在同一聚类:
    每次迭代后,查看点A、B、C的聚类标签。如果发现任何两个(或三个)点属于同一个聚类,那么进入下一步。
    step3:重新分配点到其他聚类:为了重新分配,首先计算这些点到所有其他聚类中心的距离。选择一个距离第二近的聚类中心(或根据具体情况选择最合适的),将其中一个或多个点分配到该聚类。
    step4:更新聚类中心:在调整了聚类分配后,重新计算所有聚类的中心,以最小化整体的代价函数。这通常意味着要重新计算每个聚类中所有点的平均位置作为新的聚类中心。
    重复迭代:step234:继续执行K-means迭代,直到满足收敛条件,即聚类中心的变动非常小或达到预设的迭代次数。

沉默太久了,真的折磨,不是我能去的公司,太菜。现在回想,其实也不是太难的问题。可能是太紧张了吧。放平心态继续前行
全部评论
老哥,能了解下其他的问题吗,我是26届的
点赞 回复 分享
发布于 2024-11-14 14:45 北京
有后续嘛
点赞 回复 分享
发布于 2024-04-25 23:16 广东

相关推荐

2025-12-22 11:54
已编辑
中山大学 算法工程师
最近秋招拿到offer的同学在问我一些offer抉择的问题,关于算法岗怎么选方向,尤其是业务岗和研究岗的区别。今天从几个维度聊聊这个问题。你的目标是落地还是探索?业务算法岗的核心价值在于解决问题,用成熟稳定的技术提升业务指标。日常工作围绕数据处理、特征工程和模型调优展开,最后通过A/B测试验证效果。岗位稳定、成果可量化是明显优势,但技术可能不够前沿,容易产生重复感。研究算法岗更像边界探索者,集中AI Lab这类部门。这里博士比例高,核心任务是做出比现有方案更优的算法创新,目标发表顶会论文。你能接触最前沿的技术,学术积累扎实,但成果不确定性高,压力也更大。你数全链路还是深钻型?业务岗需要全链路能力——懂业务逻辑、会特征工程、能上线部署,最终把技术转化为可量化的业务增长。研究岗则强调算法深度,要求扎实的数学功底和创新能力,更看重在细分领域的学术突破。如何选择?喜欢看到技术快速落地、享受清晰的业务反馈、工程能力强的同学,业务算法岗是更稳妥的选择。如果理论基础扎实、热衷前沿探索、能承受较高不确定性,研究算法岗的挑战和上限都更高,但要做好成果周期长的准备。不过研究岗可能有时候也需要做一点业务上的工作,这要根据部门实际情况来看。没有绝对的好坏,关键是匹配你当下的状态。业务岗是脚踏实地,研究岗是仰望星空,两者都在创造价值。选择前想清楚自己更看重什么,比盲目追求热门更重要。想了解更专业更具体的算法岗不同方向不同岗的要求,发展,前途等具体信息可以滴滴我本人拥有7年大厂算法岗经验,作为技术面面试官(含社招和校招),看过上千份简历,已面试超过上百位同学,面试和被面试经验十足,同时在ECCV/IJCAI/NeurIPS等顶会上发表过多篇论文和ACM获奖竞赛经历。职业规划 业务算法 #研究算法
你的小可爱555:帮顶,确实不错,专业能力强,已拿到面邀
点赞 评论 收藏
分享
评论
5
15
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务