数据分析面试 - ML(1-SVM)

简介:
- 支持向量机是一种机器学习算法,主要用于分类和回归问题。
- 基于统计理论的结构风险最小化原则,通过寻找最优超平面将数据集划分成不同的类别,让不同类别之间的边界最大化。
- 核心思想:通过寻找最大间隔超平面将数据分成不同的类,同时用kernel function将数据映射到高维空间,以解决非线性分类问题。

优点:
1. 可以处理高维度数据&非线性分类问题
2. 用不同的kernel function适应不同的问题(线性KF- 线性可分问题;高斯KF-非线性可分问题)
3. 对噪声数据的鲁棒性比较强,可以通过设置软间隔来避免过于依赖噪声数据

缺点:
1. 二分类模型,对于多分类需要进行多次训练
2. 对于参数选择和KF选择敏感,要进行反复实验和调整
3. 不适合处理大规模的数据集,需要进行降维度/使用随机采样的方法
4. 不直接给出概率估计,需要使用间接的方法进行概率估计,eg: Platt缩放

对噪声和缺失值敏感:
1. 噪声:对于噪声数据的鲁棒性强,如果噪声数据太多,会影响模型性能,导致过拟合/欠拟合。为了避免过拟合可以使用软间隔来降低对噪声数据的依赖性。
2. 缺失值:svm需要对整个数据集进行训练,如果存在缺失值,就要对缺失值进行处理,否则回影响模型的性能。
全部评论
哪个公司
点赞 回复 分享
发布于 2023-08-27 11:32 广东

相关推荐

10-24 00:54
已编辑
门头沟学院 Java
牛客20646354...:这连小厂都找不到就离谱,只能说可能你根本没投什么小厂。说实话现在都要11月了,没什么岗位了。其实最好是在9月找,那时候暑假工刚走,岗位多的是,现在都占满了岗位了,秋招的秋招,顶替暑假工的也基本上都顶替了。 只能多投了,简历其实都差不多,你这都不是外卖+点评去找实习了,已经比好多人优秀了。实在找不到,可以降低一些标准的,能投到自研项目的小厂说实话可能比你去中大厂能学到更多东西。因为中大厂最多给你看一点点模块功能,小厂基本上全部代码甚至几个项目的代码都能拿到。
点赞 评论 收藏
分享
评论
3
28
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务