RAG 技术:让 AI “ 知道 ” 你在问啥!
RAG 是啥?
RAG,全称 Retrieval-Augmented Generation,意思是 “ 检索增强生成 ” 。以前的 AI 模型知识有限,还可能答错或者答得不靠谱,而且企业用起来也不安全。RAG 就是来解决这些问题的!它能让 AI 在回答前先去 “ 图书馆 ” (知识库)搜资料,再给出答案。
RAG 怎么干活?
RAG 的工作流程简单来说就是三步走:
你问我答:用户问问题,比如 “ 今天吃什么好?”,RAG 系统接收到了。
翻书找答案:RAG 的 “ 小助手 ” 会飞快地在知识库里找相关资料,比如美食推荐、营养搭配之类的。
整合输出:把找到的资料和问题混合在一起,扔进大模型里加工,生成一个超棒的答案,比如 “ 今天你可以试试清蒸鲈鱼,肉嫩味美,还很营养哦!”。
RAG 的核心组件
RAG 主要有两个核心组件:
检索器(Retriever):就像在图书馆里负责找书的管理员,能在知识库里快速定位到相关资料。
生成器(Generator):拿到资料后,它就像个作家,把资料和问题结合,生成最终的回答。
RAG 跟其他技术比有啥厉害之处?
对比直接用大模型 API 或者微调,RAG 有这些牛 X 的地方:
知识更新快:知识库能实时更新,AI 就能立马掌握新知识,不用重新训练,省时省力。
省钱省心:不用大规模重新训练模型,成本大大降低。
不会忘事儿:不会像微调那样,在没训练过的任务上表现不好,稳稳地保留了模型的通用能力。
不过呢,RAG 也有点小缺点,比如在特别需要深度理解和风格模仿的问题上,可能就没微调那么厉害。
RAG 的关键环节和挑战
文档切分(Chunking):把文档切成合适的大小,就像切蛋糕一样,得找到那个完美的大小,不然可能影响检索效率。
Embedding 模型选择:选对模型就像给汽车选发动机,直接决定向量表示的质量,影响后续的检索和生成效果。
检索效果评估:得时刻监控检索的召回率和精确率,就像给检索系统做定期体检,有问题及时调整。
向量数据库的作用:它是高效存储和检索向量表示的中流砥柱,就像给知识库装上了超级导航,能快速定位到相关信息。
整体效果评估:要时不时对 RAG 系统来个全方位体检,从生成答案的准确性、相关性等方面打分,确保系统一直在线。
#牛客创作赏金赛##牛客在线求职答疑中心#
RAG,全称 Retrieval-Augmented Generation,意思是 “ 检索增强生成 ” 。以前的 AI 模型知识有限,还可能答错或者答得不靠谱,而且企业用起来也不安全。RAG 就是来解决这些问题的!它能让 AI 在回答前先去 “ 图书馆 ” (知识库)搜资料,再给出答案。
RAG 怎么干活?
RAG 的工作流程简单来说就是三步走:
你问我答:用户问问题,比如 “ 今天吃什么好?”,RAG 系统接收到了。
翻书找答案:RAG 的 “ 小助手 ” 会飞快地在知识库里找相关资料,比如美食推荐、营养搭配之类的。
整合输出:把找到的资料和问题混合在一起,扔进大模型里加工,生成一个超棒的答案,比如 “ 今天你可以试试清蒸鲈鱼,肉嫩味美,还很营养哦!”。
RAG 的核心组件
RAG 主要有两个核心组件:
检索器(Retriever):就像在图书馆里负责找书的管理员,能在知识库里快速定位到相关资料。
生成器(Generator):拿到资料后,它就像个作家,把资料和问题结合,生成最终的回答。
RAG 跟其他技术比有啥厉害之处?
对比直接用大模型 API 或者微调,RAG 有这些牛 X 的地方:
知识更新快:知识库能实时更新,AI 就能立马掌握新知识,不用重新训练,省时省力。
省钱省心:不用大规模重新训练模型,成本大大降低。
不会忘事儿:不会像微调那样,在没训练过的任务上表现不好,稳稳地保留了模型的通用能力。
不过呢,RAG 也有点小缺点,比如在特别需要深度理解和风格模仿的问题上,可能就没微调那么厉害。
RAG 的关键环节和挑战
文档切分(Chunking):把文档切成合适的大小,就像切蛋糕一样,得找到那个完美的大小,不然可能影响检索效率。
Embedding 模型选择:选对模型就像给汽车选发动机,直接决定向量表示的质量,影响后续的检索和生成效果。
检索效果评估:得时刻监控检索的召回率和精确率,就像给检索系统做定期体检,有问题及时调整。
向量数据库的作用:它是高效存储和检索向量表示的中流砥柱,就像给知识库装上了超级导航,能快速定位到相关信息。
整体效果评估:要时不时对 RAG 系统来个全方位体检,从生成答案的准确性、相关性等方面打分,确保系统一直在线。
#牛客创作赏金赛##牛客在线求职答疑中心#
全部评论
哇,你讲的好清楚呢!RAG 技术听起来就像是个超级聪明的助手,可以帮助 AI 更准确地回答问题。那么,你想知道 RAG 在实际应用中是怎么帮助我们的吗?😄 或者,如果你有其他求职或专业问题,我这个小助手也可以帮你解答哦!对了,悄悄告诉你,点击我的头像,我们可以私信聊天,更加方便呢!🎉🐮💬
相关推荐
点赞 评论 收藏
分享
点赞 评论 收藏
分享