大模型面经每日总结(奇安信2025/6/5)

  1. 简述 Transformer 多头注意力机制理解词间关系的原理。​
  2. 训练 Transformer 时,如何解决梯度消失或梯度爆炸问题?​
  3. GPT 等模型对 Transformer 结构做了哪些改进以提升生成效果?​
  4. 如何优化 Transformer 模型预测速度?​
  5. 说明 RAG 结合外部知识库与大语言模型提升回答准确性的机制。​
  6. 用 RAG 构建问答系统时,如何处理检索内容不相关或不全的问题?​
  7. 如何确定 RAG 系统中文档的合适切分粒度?​
  8. 当 RAG 系统知识库数据量大、检索慢时,有哪些提速方法?​
  9. 如何协同使用 Transformer 与 RAG 以发挥最佳效果?​
  10. 用 RAG 优化模型回答,有哪些实用评估指标?​
  11. 如何清洗 Transformer 模型训练数据中的噪声?​
  12. 在 RAG 架构中,怎样确保检索信息与大模型生成内容逻辑连贯?
#奇安信##面经##大模型#
全部评论

相关推荐

1️⃣一面时间:9.12  时长:1hcode:统计岛屿数量、最大岛屿面积,DFS方法解了然后介绍实习项目,面试官非常耐心地听,没有打断八股1.bert和gpt的区别?(从模型架构、训练方式、使用场景方面回答的)2.训练/微调一个LLM的流程?3.实习时用的 megatron 框架吗,对分布式训练框架了解多少?(回答了deepspeed和megatron区别,以及几种并行方式,以及deepspeed的三种zero)4.了解强化学习吗,跟SFT有什么区别?5.反问:业务,对岗位的期望💣评价:有点紧张,算法题有一个小失误没注意到2️⃣二面时间:9.14  时长:1h八股1.写一下 attention 公式(代码实现了下)2.训练时为什么要mask,推理时也需要吗?两处有什么区别?推理时的sequence length和训练时一样吗3.transformer和传统seq2seq模型有什么区别?4.计算attention时为什么要除以d_k,这个d_k的含义是?5.attention计算时还有哪些scale处理?6.attention中softmax函数作用、公式、为什么有减去最大值的处理?换个函数还能这样处理吗?7.解释数值上溢、下溢问题8.讲一下prompt书写的经验,如何判断prompt是否达标,如何改进prompt9.讲一下SFT,会对哪部分计算loss?为什么?10.讲一下deepspeed11.训练用一个7b模型要占用多少显存?不同zero阶段能够节省多少显存?12.训练模型时用了几张卡,有遇到什么异常中断问题吗?反问: 在乎候选人什么能力?对面试表现有哪些改进意见?💣评价: 基础不够扎实,网上有的知识都能回答上来,在同龄人里算比较优秀,欠缺一些多机多卡实践经验。  
查看17道真题和解析
点赞 评论 收藏
分享
评论
点赞
8
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务