首页 / 大模型
#

大模型

#
627026次浏览 8485人互动
此刻你想和大家分享什么
热门 最新
点赞 评论 收藏
分享
强度拉满:网易大模型算法岗
1️⃣一面 时间:9.12  时长:1hcode:统计岛屿数量、最大岛屿面积,DFS方法解了然后介绍实习项目,面试官非常耐心地听,没有打断八股1.bert和gpt的区别?(从模型架构、训练方式、使用场景方面回答的)2.训练/微调一个LLM的流程?3.实习时用的 megatron 框架吗,对分布式训练框架了解多少?(回答了deepspeed和megatron区别,以及几种并行方式,以及deepspeed的三种zero)4.了解强化学习吗,跟SFT有什么区别?5.反问:业务,对岗位的期望💣评价:有点紧张,算法题有一个小失误没注意到2️⃣二面时间:9.14  时长:1h八股1.写一下 attention 公式(代码实现了下)2.训练时为什么要mask,推理时也需要吗?两处有什么区别?推理时的sequence length和训练时一样吗3.transformer和传统seq2seq模型有什么区别?4.计算attention时为什么要除以d_k,这个d_k的含义是?5.attention计算时还有哪些scale处理?6.attention中softmax函数作用、公式、为什么有减去最大值的处理?换个函数还能这样处理吗?7.解释数值上溢、下溢问题8.讲一下prompt书写的经验,如何判断prompt是否达标,如何改进prompt9.讲一下SFT,会对哪部分计算loss?为什么?10.讲一下deepspeed11.训练用一个7b模型要占用多少显存?不同zero阶段能够节省多少显存?12.训练模型时用了几张卡,有遇到什么异常中断问题吗?反问: 在乎候选人什么能力?对面试表现有哪些改进意见?💣评价: 基础不够扎实,网上有的知识都能回答上来,在同龄人里算比较优秀,欠缺一些多机多卡实践经验。
查看17道真题和解析
点赞 评论 收藏
分享
拿下第一份大模型实习时间线
bg: 双9,2024级硕,传统工科专业,算法知识范围仅限知道一些机器学习理论,了解基本的pytorch语法,打算砖码算法岗位,计划研1下找一段实习,从今年3月初已经开始在各大平台搜索实习经验了。转码时间线:2.28开始有实习想法,但是在岗位上纠结,在后端,大模型岗位纠结。最终决定大模型岗3.1-3.7吴恩达机器学习3.8-3.21李沐深度学习3.22开始刷leedcode3.24开始做简历3.24-3.25在github上跑开源项目:BERT部署+文本分类3.25-4.1在github上跑开源项目:ChatGLM-6B部署+LLaMA-Factory微调+Prompt模板3.27注册BOSS直聘3.28参加了第一场初创公司大模型的面试,感觉面试还可以,基本上能hold住但最后也都无疾而终了,盲猜可能是技术栈不太相符以及觉着我是低年级。3.29-4.5在github上跑开源项目:Llama3-8B+RAG4.7收到三家公司面试4.7下午面试一家中厂,问题太工程,而我是凑开源项目+偏算法理论性的科研,完全经不住拷打。4.8收到第一个offer,岗位感觉偏大模型调研,拒绝。4.10收到第二个offer,离学校路程半小时+大模型核心岗,但小厂,接收。回归整个实习准备,对我个人而言其实最难的是不断细化调整方向,以及在面试pass被无数次的心态调整,但总体来说是看着自己一步步的进步。记得第一次修改简历时,我对着空白文档发呆了两个小时,如今却能快速抓住岗位JD的关键词进行精准匹配;曾经在群面中紧张到声音发抖,现在面对压力面试已经能从容展现逻辑思维。
点赞 评论 收藏
分享
06-24 10:39
已编辑
西安交通大学 人工智能
大模型面试 | 大模型评估全攻略
攻略 🌈【大模型评估全攻略】!LLM七大核心评估维度保姆级拆解💯👉🏻预训练→SFT→RLHF→数据集→RAG→Agent→Prompt🔥一、预训练评估评估大型语言模型(LLM)的预训练效果需要从多个维度综合考量,涉及基础语言能力、下游任务表现、知识掌握、推理能力等。🔥二、SFT评估评估大型语言模型(LLM)在监督式微调(Supervised Fine-Tuning, SFT)后的效果,需要结合任务目标、领域特性和模型能力设计多维度的评估体系。🔥️三、RLHF评估评估大型语言模型(LLM)在通过RLHF(基于人类反馈的强化学习)后的效果需要从多个维度综合考量,包括生成质量、安全性、对齐性、任务完成度等。🔥四、数据集评估在评估数据集的质量时,可以从以下几个关键方面进行评估:1. 数据多样性2. 数据平衡性3. 数据完整性4. 数据一致性5. 数据与任务的适合性6. 标注准确性🔥五、RAG评估从召回、排序、生成、整体四个维度来评估RAG性能。使用了多种指标,如准确率(Correct)、错误率(Wrong)、失败率(Fail)、BERTScore、ROUGE Score等,以全面评估生成答案的质量。🔥六、Agent评估现如今Agent开发工具/框架不断出现,但如何全面地对Agent进行评估却很困难,本文就从介绍一些主流的Agent/LLM-as-Agent评估工作来看看是否能得到一些启发。🔥七、Prompt评估评估Prompt的好坏需要一个全面和多维度的方法,结合自动评估指标、人工评估和用户反馈等多种手段。选择合适的评估方法和技术,能够有效提升Prompt的质量和生成效果,进而提高模型的整体性能和应用体验。通过不断优化和改进Prompt设计,可以实现更自然、更准确、更有效的自然语言。
点赞 评论 收藏
分享
玩命加载中
牛客网
牛客网在线编程
牛客网题解
牛客企业服务