题解 | 计算两个矩阵的乘积
计算两个矩阵的乘积
https://www.nowcoder.com/practice/ed6552d03e624ba58d16af6d57e1c3e9
#define _CRT_SECURE_NO_WARNINGS
#include <cstdio>
#include <iostream>
using namespace std;
const int maxn = 10;
struct Matrix {
int row, col;
int matrix[maxn][maxn];
Matrix() {};
Matrix(int r, int c) :row(r), col(c) {}
};
Matrix Add(Matrix x, Matrix y) {
Matrix answer = Matrix(x.row, x.col);
for (int i = 0; i < answer.row; i++) {
for (int j = 0; j < answer.col; j++) {
answer.matrix[i][j] = x.matrix[i][j] + y.matrix[i][j];
}
}
return answer;
}
Matrix multuply(Matrix x, Matrix y) {
Matrix answer = Matrix(x.row, y.col);
for (int i = 0; i < x.row; i++) {
for (int j = 0; j < y.col; j++) {
answer.matrix[i][j] = 0; //注:将答案矩阵全部初始化为0
for (int k = 0; k < x.col; k++) {
answer.matrix[i][j] += x.matrix[i][k] * y.matrix[k][j];
}
}
}
return answer;
}
void printmatrix(Matrix answer) {
for (int i = 0; i < answer.row; i++) {
for (int j = 0; j < answer.col; j++) {
printf("%d ", answer.matrix[i][j]);
}
printf("\n");
}
}
int main() {
Matrix x(2,3);
Matrix y(3,2);
for (int i = 0; i < x.row; i++) {
for (int j = 0; j < x.col; j++) {
scanf("%d", &x.matrix[i][j]);
}
}
for (int i = 0; i < y.row; i++) {
for (int j = 0; j < y.col; j++) {
scanf("%d", &y.matrix[i][j]);
}
}
Matrix answer = multuply(x, y);
printmatrix(answer);
return 0;
}
矩阵与矩阵快速幂 文章被收录于专栏
数学问题中另外一个常考的知识点是矩阵。考查的内容不难,一般只考查矩阵的基本运算, 如矩阵加法、矩阵乘法、矩阵转置等。通常,可用一个二维数组来模拟矩阵 类似于普通快速幂,矩阵的快速幂就是高效求矩阵多幂次的方法,其思想和普通快速幂的 思想相同。唯一不同的地方在于,对数字的快速幂而言,其初始值是1;而对于矩阵快速幂而 言,其初始值是单位矩阵
