算法面试高频知识点:SPP layer详解
在目标检测领域,很多检测算法最后使用了全连接层,导致输入尺寸固定。当遇到尺寸不匹配的图像输入时,就需要使用crop或者warp等操作进行图像尺寸和算法输入的匹配。这两种方式可能出现不同的问题:裁剪的区域可能没法包含物体的整体;变形操作造成目标无用的几何失真等。
而SPP的做法是在卷积层后增加一个SPP layer,将features map拉成固定长度的feature vector。然后将feature vector输入到全连接层中。以此来解决上述的尴尬问题。
SPP的优点:
- SPP可以忽略输入尺寸并且产生固定长度的输出。
- SPP使用多种尺度的滑动核,而不是只用一个尺寸的滑动窗口进行pooling。
- SPP在不同尺寸feature map上提取特征,增大了提取特征的丰富度。
在YOLOv4中,对SPP进行了创新使用,Rocky已在【Make YOLO Great Again】YOLOv1-v7全系列大解析(Neck篇)中详细讲解,大家可按需取用~
#秋招##实习##面经##面试八股文##面霸的自我修养#