PAT甲级同类型题 1090 1079 1106

1090 Highest Price in Supply Chain (25分)

A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyone involved in moving a product from supplier to customer.

Starting from one root supplier, everyone on the chain buys products from one's supplier in a price P and sell or distribute them in a price that is r% higher than P. It is assumed that each member in the supply chain has exactly one supplier except the root supplier, and there is no supply cycle.

Now given a supply chain, you are supposed to tell the highest price we can expect from some retailers.

Input Specification:

Each input file contains one test case. For each case, The first line contains three positive numbers: N (≤), the total number of the members in the supply chain (and hence they are numbered from 0 to N1); P, the price given by the root supplier; and r, the percentage rate of price increment for each distributor or retailer. Then the next line contains N numbers, each number Si is the index of the supplier for the i-th member. Sroot for the root supplier is defined to be −. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the highest price we can expect from some retailers, accurate up to 2 decimal places, and the number of retailers that sell at the highest price. There must be one space between the two numbers. It is guaranteed that the price will not exceed 1.

Sample Input:

9 1.80 1.00
1 5 4 4 -1 4 5 3 6
			

Sample Output:

1.85 2
			
#include<iostream>
#include<vector>
using namespace std;
#define maxn 10005
vector<int>node[maxn];
int n, maxh = 0, num = 0;
double p, r;
void DFS(int index, int h)
{
	if (index > n)return;
	if (node[index].size() == 0)
	{
		if (h > maxh)
		{
			num = 1;
			maxh = h;
		}
		else if (h == maxh)
					num++;
		return;
	}
	for (int i = 0; i < node[index].size(); i++)
		DFS(node[index][i], h + 1);
}
int main()
{
	FILE* stream1;
	freopen_s(&stream1, "input.txt", "r", stdin);
	cin >> n >> p >> r;
	r /= 100;
	int par,root;
	for (int i = 0; i < n; i++)
	{
		cin >> par;
		if (par != -1)
			node[par].push_back(i);
		else
			root = i;
	}
	DFS(root, 0);
	/*for (int i = 0; i < maxh; i++)
		p *= (1 + r);*/
	//用pow函数代替

	printf("%.2f %d\n", p*pow(1+r,maxh), num);
	return 0;
}
1079 Total Sales of Supply Chain (25分)

A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyone involved in moving a product from supplier to customer.

Starting from one root supplier, everyone on the chain buys products from one's supplier in a price P and sell or distribute them in a price that is r% higher than P. Only the retailers will face the customers. It is assumed that each member in the supply chain has exactly one supplier except the root supplier, and there is no supply cycle.

Now given a supply chain, you are supposed to tell the total sales from all the retailers.

Input Specification:

Each input file contains one test case. For each case, the first line contains three positive numbers: N (≤), the total number of the members in the supply chain (and hence their ID's are numbered from 0 to N1, and the root supplier's ID is 0); P, the unit price given by the root supplier; and r, the percentage rate of price increment for each distributor or retailer. Then N lines follow, each describes a distributor or retailer in the following format:

Ki ID[1] ID[2] ... ID[Ki]

where in the i-th line, Ki is the total number of distributors or retailers who receive products from supplier i, and is then followed by the ID's of these distributors or retailers. Kj being 0 means that the j-th member is a retailer, then instead the total amount of the product will be given after Kj. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the total sales we can expect from all the retailers, accurate up to 1 decimal place. It is guaranteed that the number will not exceed 1.

Sample Input:

10 1.80 1.00
3 2 3 5
1 9
1 4
1 7
0 7
2 6 1
1 8
0 9
0 4
0 3
						

Sample Output:

42.4
						
#include<iostream>
#include<vector>
using namespace std;
#define maxn 100005
struct nod
{
	double data;
	vector<int>child;
}node[maxn];
int n, maxh = 0, num = 0;
double p, r,ans = 0;
void DFS(int index, int h)
{
	if (node[index].child.size() == 0)
	{
		ans += node[index].data  * pow(1 + r, h);
		return;
	}
	for (int i = 0; i < node[index].child.size(); i++)
		DFS(node[index].child[i], h + 1);
}
int main()
{
	cin >> n >> p >> r;
	r /= 100;
	int k,child;
	for (int j = 0; j < n; j++)
	{
		cin >> k;
		if (k == 0)
			cin >> node[j].data;
		else
		{
			for (int i = 0; i < k; i++)
			{
				cin >> child;
				node[j].child.push_back(child);
			}
		}
	}
	DFS(0, 0);
	printf("%.1f\n", p*ans);
	return 0;
}

1106 Lowest Price in Supply Chain (25分)

A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyone involved in moving a product from supplier to customer.

Starting from one root supplier, everyone on the chain buys products from one's supplier in a price P and sell or distribute them in a price that is r% higher than P. Only the retailers will face the customers. It is assumed that each member in the supply chain has exactly one supplier except the root supplier, and there is no supply cycle.

Now given a supply chain, you are supposed to tell the lowest price a customer can expect from some retailers.

Input Specification:

Each input file contains one test case. For each case, The first line contains three positive numbers: N (≤), the total number of the members in the supply chain (and hence their ID's are numbered from 0 to N1, and the root supplier's ID is 0); P, the price given by the root supplier; and r, the percentage rate of price increment for each distributor or retailer. Then N lines follow, each describes a distributor or retailer in the following format:

Ki ID[1] ID[2] ... ID[Ki]

where in the i-th line, Ki is the total number of distributors or retailers who receive products from supplier i, and is then followed by the ID's of these distributors or retailers. Kj being 0 means that the j-th member is a retailer. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the lowest price we can expect from some retailers, accurate up to 4 decimal places, and the number of retailers that sell at the lowest price. There must be one space between the two numbers. It is guaranteed that the all the prices will not exceed 1.

Sample Input:

10 1.80 1.00
3 2 3 5
1 9
1 4
1 7
0
2 6 1
1 8
0
0
0
									

Sample Output:

1.8362 2
									
这题求最小的零售价格,就是求最小的深度,所以可以用DFS求出最小的深度,输出时再计算价格
未剪枝版本
#include<iostream>
#include<vector>
#include<iomanip>
using namespace std;
const int maxn = 100005;
vector<int>node[maxn];
int num = 0,minh=100005;
void DFS(int index, int h)
{
	if (node[index].size() == 0)
	{
		if (h < minh)
		{
			num =1;
			minh = h;
		}
		else if (h == minh)
			num++;
		return;
	}
	for (int i = 0; i < node[index].size(); i++)
		DFS(node[index][i], h + 1);
}
int main()
{
	FILE* stream1;
	freopen_s(&stream1, "input.txt", "r", stdin);
	int n, k,child;
	double p, r;
	cin >> n >> p >> r;
	r /= 100;
	for (int i = 0; i < n; i++)
	{
		cin >> k;
		if (k != 0)
		{
			for (int j = 0; j < k; j++)
			{
				cin >> child;
				node[i].push_back(child);
			}
		}
	}
	DFS(0, 0);
	cout << fixed << setprecision(4) << p * pow(1 + r,minh) << " " << num << endl;
	return 0;
}

剪枝版本
#include<iostream>
#include<vector>
#include<iomanip>
using namespace std;
const int maxn = 100005;
vector<int>node[maxn];
int num = 0,minh=100005;
void DFS(int index, int h)
{
	if (node[index].size() == 0)
	{
		if (h < minh)
		{
			num =1;
			minh = h;
		}
		else if (h == minh)
			num++;
		return;
	}
	if (h <minh)//提前剪枝,当当前节点的深度>=最小深度时,则不用再继续DFS了,直接返回
	{
		for (int i = 0; i < node[index].size(); i++)
		{
			DFS(node[index][i], h + 1);
		}
	}
}
		
int main()
{
	FILE* stream1;
	freopen_s(&stream1, "input.txt", "r", stdin);
	int n, k,child;
	double p, r;
	cin >> n >> p >> r;
	r /= 100;
	for (int i = 0; i < n; i++)
	{
		cin >> k;
		if (k != 0)
		{
			for (int j = 0; j < k; j++)
			{
				cin >> child;
				node[i].push_back(child);
			}
		}
	}
	DFS(0, 0);
	cout << fixed << setprecision(4) << p * pow(1 + r,minh) << " " << num << endl;
	return 0;
}




代码学习笔记 文章被收录于专栏

学习笔记,pat,牛客

全部评论

相关推荐

1、自我介绍2、Agent项目是实习项目还是个人项目?有没有上线?3、拷打实习(10min)4、大模型微调,你的训练数据集是如何构建的?数据量有多大?5、在构建数据集的过程中,遇到了哪些挑战?花了多长时间?6、你之前的实习经历偏后端工程,你未来的职业规划更倾向于纯后端开发,还是希望从事与AI/大模型结合的工作?7、详细讲一下Golang中Channel的概念和作用,它是否是并发安全的?8、Channel和传统的锁(Mutex)在实现并发控制时有什么区别?各自的适用场景是什么?9、讲一下GMP模型10、当P的本地队列为空或者不为空时,它会怎么去调度G(协程)?11、Redis支持哪些数据结构12、为什么Redis的速度这么快13、如何实现一个类似淘宝搜索框的实时商品名称模糊搜索功能?14、实时输入联想与输入完成后点击搜索在技术实现上有什么本质区别?15、实时搜索通常使用什么网络协议(如WebSocket)?你了解或有使用过吗?讲一下16、请详细说明微信扫码登录的完整流程和背后发生的原理17、在微服务架构中,服务发现和负载均衡是如何实现的?18、服务注册中心(如Nacos,&nbsp;Consul)是如何工作的?服务实例如何注册和保活(如通过心跳机制)?19、讲一下Agent中的“长短期记忆”20、什么样的信息应该放在长期记忆,什么样的信息放在短期记忆?21、当对话轮数很多,上下文窗口不足时,有哪些处理策略?(如截断、压缩)22、如果要进行记忆压缩,通常有哪些方法?23、了解过Agent的设计范式吗?有哪些?24、你设计的Agent是怎么实现ReAct模式的?详细讲讲25、手撕:实现一个并发任务处理器:给定一个包含100个任务ID的列表,要求控制最大并发数为3,模拟并发调用某个外部接口(如打印ID)26、反问
查看24道真题和解析
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务