【神经网络】神经网络结构在命名实体识别(NER)中的应用

命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型,如下图。它是NLP领域中一些复杂任务(例如关系抽取,信息检索等)的基础。

NER一直是NLP领域中的研究热点,从早期基于词典和规则的方法,到传统机器学习的方法,到近年来基于深度学习的方法,NER研究进展的大概趋势大致如下图所示。

在基于机器学习的方法中,NER被当作是序列标注问题。与分类问题相比,序列标注问题中当前的预测标签不仅与当前的输入特征相关,还与之前的预测标签相关,即预测标签序列之间是有强相互依赖关系的。例如,使用BIO标签策略进行NER时,正确的标签序列中标签O后面是不会接标签I的

在传统机器学习中,条件随机场(Conditional Random Field,CRF)是NER目前的主流模型。它的目标函数不仅考虑输入的状态特征函数,而且还包含了标签转移特征函数。在训练时可以使用SGD学习模型参数。在已知模型时,给输入序列求预测输出序列即求使目标函数最大化的最优序列,是一个动态规划问题,可以使用维特比算法进行解码。

在传统机器学习方法中,常用的特征如下:

 

全部评论

相关推荐

05-11 11:48
河南大学 Java
程序员牛肉:我是26届的双非。目前有两段实习经历,大三上去的美团,现在来字节了,做的是国际电商的营销业务。希望我的经历对你有用。 1.好好做你的CSDN,最好是直接转微信公众号。因为这本质上是一个很好的展示自己技术热情的证据。我当时也是烂大街项目(网盘+鱼皮的一个项目)+零实习去面试美团,但是当时我的CSDN阅读量超百万,微信公众号阅读量40万。面试的时候面试官就告诉我说觉得我对技术挺有激情的。可以看看我主页的美团面试面经。 因此花点时间好好做这个知识分享,最好是单拉出来搞一个板块。各大公司都极其看中知识落地的能力。 可以看看我的简历对于博客的描述。这个帖子里面有:https://www.nowcoder.com/discuss/745348200596324352?sourceSSR=users 2.实习经历有一些东西删除了,目前看来你的产出其实很少。有些内容其实很扯淡,最好不要保留。有一些点你可能觉得很牛逼,但是面试官眼里是减分的。 你还能负责数据库表的设计?这个公司得垃圾成啥样子,才能让一个实习生介入数据库表的设计,不要写这种东西。 一个公司的财务审批系统应该是很稳定的吧?为什么你去了才有RBAC权限设计?那这个公司之前是怎么处理权限分离的?这些东西看着都有点扯淡了。 还有就是使用Redis实现轻量级的消息队列?那为什么这一块不使用专业的MQ呢?为什么要使用redis,这些一定要清楚, 就目前看来,其实你的这个实习技术还不错。不要太焦虑。就是有一些内容有点虚了。可以考虑从PR中再投一点产出
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客企业服务