科大讯飞日常实习nlp算法

面试有点简单,面完直接过了
1.自我介绍

2.attention的计算公式
追问:为什么除根号dk

3.bert和gpt了解吗(only encoder/decoder)

4.lora原理

5.模型蒸馏

6.用过哪些微调

7.BN和LN的区别

8.过拟合怎么处理

9.数据不平衡怎么处理

全部评论
楼主入职了吗?工作内容咋样
点赞 回复 分享
发布于 05-13 12:40 北京
佬 求问这种央企的招聘一般哪里找
点赞 回复 分享
发布于 04-22 10:46 湖北
为此还拒了一个央企的面试,那个岗位还挺喜欢的
点赞 回复 分享
发布于 04-16 15:49 重庆

相关推荐

1️⃣一面时间:9.12  时长:1hcode:统计岛屿数量、最大岛屿面积,DFS方法解了然后介绍实习项目,面试官非常耐心地听,没有打断八股1.bert和gpt的区别?(从模型架构、训练方式、使用场景方面回答的)2.训练/微调一个LLM的流程?3.实习时用的 megatron 框架吗,对分布式训练框架了解多少?(回答了deepspeed和megatron区别,以及几种并行方式,以及deepspeed的三种zero)4.了解强化学习吗,跟SFT有什么区别?5.反问:业务,对岗位的期望💣评价:有点紧张,算法题有一个小失误没注意到2️⃣二面时间:9.14  时长:1h八股1.写一下 attention 公式(代码实现了下)2.训练时为什么要mask,推理时也需要吗?两处有什么区别?推理时的sequence length和训练时一样吗3.transformer和传统seq2seq模型有什么区别?4.计算attention时为什么要除以d_k,这个d_k的含义是?5.attention计算时还有哪些scale处理?6.attention中softmax函数作用、公式、为什么有减去最大值的处理?换个函数还能这样处理吗?7.解释数值上溢、下溢问题8.讲一下prompt书写的经验,如何判断prompt是否达标,如何改进prompt9.讲一下SFT,会对哪部分计算loss?为什么?10.讲一下deepspeed11.训练用一个7b模型要占用多少显存?不同zero阶段能够节省多少显存?12.训练模型时用了几张卡,有遇到什么异常中断问题吗?反问: 在乎候选人什么能力?对面试表现有哪些改进意见?💣评价: 基础不够扎实,网上有的知识都能回答上来,在同龄人里算比较优秀,欠缺一些多机多卡实践经验。  
查看17道真题和解析
点赞 评论 收藏
分享
评论
点赞
9
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务