DeepCritic:SFT+RL两阶训练显著提升LLM自我监督能力!!

论文题目:DeepCritic: Deliberate Critique with Large Language Models
论文地址:https://arxiv.org/pdf/2505.00662
论文详解:https://mp.weixin.qq.com/s/6eridKO3iB1jO_W8Vwb7cg

文章的核心贡献是提出了一个名为 DeepCritic 的新型两阶段框架,用于开发能够对数学解题过程的每个推理步骤进行深入批判的 LLM critics。实验结果表明基于 Qwen2.5-7B-Instruct 开发的 DeepCritic 模型在多个错误识别基准测试中显著优于现有的 LLM critics(包括同尺寸的 DeepSeek-R1-distill 模型和 GPT-4o),并且能够通过更详细的反馈更有效地帮助 LLM 生成器修正错误步骤。

两阶段训练方式
第一阶段:监督式微调(SFT):通过利用 Qwen2.5-72B-Instruct 生成 4.5K 长篇批判作为种子数据进行监督式微调,使模型能够生成包含多视角验证和深入批判的批判内容。
第二阶段:强化学习(RL):在监督式微调的基础上,进一步通过强化学习优化模型的批判能力。强化学习的数据来源可以是现有的人标注数据(如 PRM800K),也可以是通过蒙特卡洛采样估计正确性自动标注的数据。
#大模型论文分享##大模型##强化学习##监督微调##论文分享##聊聊我眼中的AI#
全部评论
点赞 回复 分享
发布于 09-02 14:38 北京

相关推荐

09-22 14:41
已编辑
门头沟学院 算法工程师
面试是24年7月的现在已经入职几个月了,补一下面经,帮有需要的同学参考。BG:本硕985 计算机论文1A1B一面:技术面自我介绍 & 简历相关。简单介绍了自己在多模态和大模型方向的研究/工作经历,包括在校期间的论文工作以及实习经历。面试官主要针对简历上的项目提了一些细节问题,比如具体模型的量级,提升了多少,和哪些方法做了比较等。因为是自己的工作,所以没有卡壳。问有没有遇到过 Python 文件之间互相 import 的问题,出现这种问题怎么办?让我简单介绍了一下 PPO 算法,以及和 TRPO 的区别是什么?接着 PPO,问了一下 ChatGPT 的 RLHF 流程,以及为什么不直接用 SFT,而是要用强化这么麻烦的方式训练模型?继续追问 RLHF、SFT、LoRA 的区别,分别适用于什么场景?反问:公司现有业务是什么,计算资源情况等。二面:主管面论文介绍。让我用通俗的语言介绍我自己发表和投稿的论文,重点是研究动机和要解决的问题。问有没有亲手训练过大模型,最多用了多少张 GPU 卡?并行训练使用的框架是什么?介绍一下 DeepSpeed,说一下这个框架在并行的不同阶段(ZeRO stage)分别做了哪些事?训练模型的时候,数据量有多少,怎么收集数据的,训练花了多少时间?遇到的最大问题是什么?问在大模型全量微调时,显存消耗分别由哪些部分占用?(参数、梯度、优化器状态、激活信息等),分别占用多少?假设模型参数量为N,请分不同情况讨论和计算一下微调所需要的显存(不同精度、batch size、seq len 等)。说一下 LoRA 公式,讲一讲其中 A 和 B 两个矩阵分别表示什么。LoRA 的优缺点是什么,什么场景下适合使用?问知道哪些大模型训练和推理框架,用过哪些?问 LLaVA 的结构是什么,和常规的纯文本大模型有什么区别?Encoder-Decoder 结构的模型转 ONNX 的一般流程,遇到不支持的算子怎么办?可能遇到的问题(动态 shape、模型中逻辑判断需要单独写、模块拆分等)。三面:HR 面主要问了为什么选择公司,对团队的看法,对岗位的认识;未来大致的规划,面试过程的体验,有没有别的公司的 offer 等。以及询问了期望薪资等。之后就是等待,最终和期望薪资基本一致。总体感受面试流程比较顺畅,问题也比较贴合岗位要求;如果和岗位匹配度高,一般流程推进速度会很快。入职以后,工作内容和面试被问的问题也差不多,基本上都是算法工程师需要做的内容,团队氛围也很不错。只是毕竟是企业,不可能光搞研究,在承接业务时还是免不了和很多人打交道和来回battle需求,这个无可避免。
查看19道真题和解析
点赞 评论 收藏
分享
1️⃣RAG 有哪几个步骤?Step1:将文本分割成块;Step2:使用编码模型将这些块嵌入到向量中,将所有这些向量放入索引中;Step3:LLM 创建一个提示,告诉模型根据我们在搜索步骤中找到的上下文来回答用户的查询。2️⃣实际项目中RAG有哪些优化技巧?首先召回源会考虑多路召回,在召回后面增加一个重排序的阶段,提升召回的质量。另外,重排序模型以及生成模型会根据系统问答的指标情况,进一步微调。3️⃣RAG 中为什么会出现幻觉?出现幻觉问题主要分为两大类,一是生成结果与数据源不一致,训练数据和源数据不一致、数据没对齐或者编码器理解能力的缺陷导致;二是用户问题超出了大模型的认知,用户的问题不在语言模型认知范围内导致。4️⃣RAG 一般怎么做效果评估?RAG 做效果评估主要是针对检索和生成两个环节。对检索环节,我们可以采用 MRR 即平均倒排率,前 k 项的 Hits Rate 命中率, NDCG 排序指标等。生成环节首先是量化指标,再评估生成答案的多样性,看看模型是否能够生成多种合理且相关的答案。还需要引入人类评估,考虑资源效率。5️⃣针对幻觉的问题,有什么解决思路?加入一些纠偏规则,比如采用 ReAct 的思想,让大模型对输出的结果进行反思。还有一种思路是集成知识图谱,即不再局限于向量数据库匹配,做召回时不仅考虑文档块,同时还考虑图谱的三元组。将知识图谱( KGs )集成到 RAG 中,通过利用知识图谱中结构化且相互关联的数据,可以显著增强当前 RAG 系统的推理能力。6️⃣在实际做项目中,经常遇到各种边界的 case ,一般怎么解决?这个需要分情况来看,首先是无效问题:如果对于知识库中没有的问题,我们需要做一个准入的判别,判断是否需要回答。一般是一个二分类模型,或者直接用大模型+ prompt 来做,使模型在这种情况下输出一个预设的兜底话术。第二个是减少幻觉,在推理模块中添加规则和提示工程技术。还有一种是格式错误:模型可能会生成无法解析的答案,这种可以设计一个备份的代理大模型,当解析失败时,可以基于代理大模型直接生成简洁准确的总结。📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看6道真题和解析
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务