#AI#具体的机器学习模型有:
构造间隔理论分布:聚类分析和模式识别
人工神经网络
决策树
感知器
支持向量机
集成学习AdaBoost
降维与度量学习
聚类
贝叶斯分类器
构造条件概率:回归分析和统计分类
高斯过程回归
线性判别分析
最近邻居法
径向基函数核
通过再生模型构造概率密度函数:
最大期望算法
概率图模型:包括贝叶斯网络和Markov随机场
Generative Topographic Mapping
近似推断技术:
马尔可夫链
蒙特卡罗方法
变分法
最优化:大多数以上方法,直接或者间接使用最优化算法。
量子机器学习
构造间隔理论分布:聚类分析和模式识别
人工神经网络
决策树
感知器
支持向量机
集成学习AdaBoost
降维与度量学习
聚类
贝叶斯分类器
构造条件概率:回归分析和统计分类
高斯过程回归
线性判别分析
最近邻居法
径向基函数核
通过再生模型构造概率密度函数:
最大期望算法
概率图模型:包括贝叶斯网络和Markov随机场
Generative Topographic Mapping
近似推断技术:
马尔可夫链
蒙特卡罗方法
变分法
最优化:大多数以上方法,直接或者间接使用最优化算法。
量子机器学习
全部评论
相关推荐

点赞 评论 收藏
分享