K-means聚类算法全解析

Week09-Clustering聚类&k-mean技术解析

聚类分析概述

聚类是一种无监督学习方法,旨在将数据划分为具有相似特征的组。与分类不同,聚类不需要预先标记的数据,而是通过数据的内在结构自动分组。常见的应用场景包括客户细分、图像分割和异常检测。

k-means算法原理

k-means是一种基于距离的聚类算法,通过迭代优化将数据划分为k个簇。其核心思想是最小化簇内平方误差(SSE),公式如下: $$SSE = \sum_{i=1}^{k}\sum_{x\in C_i}||x-\mu_i||^2$$ 其中$C_i$表示第i个簇,$\mu_i$是该簇的质心。

k-means实现步骤

  1. 随机选择k个初始质心
  2. 计算每个样本点到质心的距离,分配到最近的簇
  3. 重新计算每个簇的质心(均值)
  4. 重复步骤2-3直到质心不再变化或达到最大迭代次数

Python实现示例:

from sklearn.cluster import KMeans
import numpy as np

# 生成示例数据
X = np.random.rand(100, 2)

# 创建k-means模型
kmeans = KMeans(n_clusters=3, random_state=0)

# 训练模型
kmeans.fit(X)

# 获取聚类结果
labels = kmeans.labels_
centers = kmeans.cluster_centers_

算法优化与挑战

初始质心选择对结果影响显著,常用改进方法包括:

  • k-means++:通过概率分布优化初始质心选择
  • 二分k-means:通过层次分裂方式确定簇数
  • Mini-Batch k-means:适用于大规模数据集

肘部法则可帮助确定最佳k值:

inertias = []
for k in range(1, 11):
    kmeans = KMeans(n_clusters=k)
    kmeans.fit(X)
    inertias.append(kmeans.inertia_)

评估指标

常用聚类评估方法包括:

  • 轮廓系数:衡量簇内紧密度和簇间分离度
  • Calinski-Harabasz指数:基于簇间和簇内离散度比值
  • Davies-Bouldin指数:反映簇间相似度

应用实例

在客户细分中,k-means可根据购买行为将客户分组。特征工程阶段通常需要:

  • 数据标准化(MinMaxScaler或StandardScaler)
  • 特征选择(PCA降维)
  • 异常值处理

扩展阅读

  • 层次聚类:适合小规模数据集,可生成树状图
  • DBSCAN:基于密度的聚类方法,能发现任意形状簇
  • 谱聚类:结合图论和线性代数,适合非凸分布数据

BbS.okacop030.info/PoSt/1120_052283.HtM
BbS.okacop031.info/PoSt/1120_447481.HtM
BbS.okacop032.info/PoSt/1120_306866.HtM
BbS.okacop033.info/PoSt/1120_472935.HtM
BbS.okacop034.info/PoSt/1120_109268.HtM
BbS.okacop035.info/PoSt/1120_483537.HtM
BbS.okacop036.info/PoSt/1120_035746.HtM
BbS.okacop037.info/PoSt/1120_486698.HtM
BbS.okacop038.info/PoSt/1120_115894.HtM
BbS.okacop039.info/PoSt/1120_014222.HtM
BbS.okacop040.info/PoSt/1120_699842.HtM
BbS.okacop041.info/PoSt/1120_876222.HtM
BbS.okacop042.info/PoSt/1120_656693.HtM
BbS.okacop043.info/PoSt/1120_756545.HtM
BbS.okacop044.info/PoSt/1120_007216.HtM
BbS.okacop045.info/PoSt/1120_647242.HtM
BbS.okacop046.info/PoSt/1120_696367.HtM
BbS.okacop047.info/PoSt/1120_751528.HtM
BbS.okacop048.info/PoSt/1120_405730.HtM
BbS.okacop049.info/PoSt/1120_772690.HtM
BbS.okacop040.info/PoSt/1120_165762.HtM
BbS.okacop041.info/PoSt/1120_704595.HtM
BbS.okacop042.info/PoSt/1120_847236.HtM
BbS.okacop043.info/PoSt/1120_217782.HtM
BbS.okacop044.info/PoSt/1120_211855.HtM
BbS.okacop045.info/PoSt/1120_283500.HtM
BbS.okacop046.info/PoSt/1120_341209.HtM
BbS.okacop047.info/PoSt/1120_481175.HtM
BbS.okacop048.info/PoSt/1120_312261.HtM
BbS.okacop049.info/PoSt/1120_856871.HtM
BbS.okacop040.info/PoSt/1120_924246.HtM
BbS.okacop041.info/PoSt/1120_223969.HtM
BbS.okacop042.info/PoSt/1120_216869.HtM
BbS.okacop043.info/PoSt/1120_955040.HtM
BbS.okacop044.info/PoSt/1120_622490.HtM
BbS.okacop045.info/PoSt/1120_171297.HtM
BbS.okacop046.info/PoSt/1120_979792.HtM
BbS.okacop047.info/PoSt/1120_933678.HtM
BbS.okacop048.info/PoSt/1120_117294.HtM
BbS.okacop049.info/PoSt/1120_232476.HtM
BbS.okacop040.info/PoSt/1120_284037.HtM
BbS.okacop041.info/PoSt/1120_015138.HtM
BbS.okacop042.info/PoSt/1120_421190.HtM
BbS.okacop043.info/PoSt/1120_298842.HtM
BbS.okacop044.info/PoSt/1120_084884.HtM
BbS.okacop045.info/PoSt/1120_158004.HtM
BbS.okacop046.info/PoSt/1120_565734.HtM
BbS.okacop047.info/PoSt/1120_394149.HtM
BbS.okacop048.info/PoSt/1120_616457.HtM
BbS.okacop049.info/PoSt/1120_389383.HtM
BbS.okacop040.info/PoSt/1120_671823.HtM
BbS.okacop041.info/PoSt/1120_259443.HtM
BbS.okacop042.info/PoSt/1120_257916.HtM
BbS.okacop043.info/PoSt/1120_162296.HtM
BbS.okacop044.info/PoSt/1120_525022.HtM
BbS.okacop045.info/PoSt/1120_664415.HtM
BbS.okacop046.info/PoSt/1120_638528.HtM
BbS.okacop047.info/PoSt/1120_230414.HtM
BbS.okacop048.info/PoSt/1120_161088.HtM
BbS.okacop049.info/PoSt/1120_258317.HtM
BbS.okacop040.info/PoSt/1120_385312.HtM
BbS.okacop041.info/PoSt/1120_484799.HtM
BbS.okacop042.info/PoSt/1120_972314.HtM
BbS.okacop043.info/PoSt/1120_778851.HtM
BbS.okacop044.info/PoSt/1120_582662.HtM
BbS.okacop045.info/PoSt/1120_385626.HtM
BbS.okacop046.info/PoSt/1120_115627.HtM
BbS.okacop047.info/PoSt/1120_290067.HtM
BbS.okacop048.info/PoSt/1120_086909.HtM
BbS.okacop049.info/PoSt/1120_569539.HtM
BbS.okacop040.info/PoSt/1120_027548.HtM
BbS.okacop041.info/PoSt/1120_770262.HtM
BbS.okacop042.info/PoSt/1120_289974.HtM
BbS.okacop043.info/PoSt/1120_241512.HtM
BbS.okacop044.info/PoSt/1120_167383.HtM
BbS.okacop045.info/PoSt/1120_862409.HtM
BbS.okacop046.info/PoSt/1120_218434.HtM
BbS.okacop047.info/PoSt/1120_942333.HtM
BbS.okacop048.info/PoSt/1120_239246.HtM
BbS.okacop049.info/PoSt/1120_496003.HtM

#牛客AI配图神器#

全部评论

相关推荐

评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务