题解 | 单神经元
单神经元
https://www.nowcoder.com/practice/8903b7c94c6f4f4f963b7d05e1e397c7
import math import numpy as np def sigmoid(x): return 1/(1+math.exp(-1*x)) def single_neuron_model(features, labels, weights, bias): probabilities = [] diff = 0 for i in range(len(features)): z = np.dot(features[i], weights) + bias z = round(sigmoid(z), 4) probabilities.append(z) diff += (z-labels[i])**2 mse = round(diff / len(features), 4) return probabilities, mse if __name__ == "__main__": features = np.array(eval(input())) labels = np.array(eval(input())) weights = np.array(eval(input())) bias = float(input()) print(single_neuron_model(features, labels, weights, bias))