小A的最短路
小A的最短路
https://ac.nowcoder.com/acm/problem/23482
题面大意
Solution
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define mk(__x__,__y__) make_pair(__x__,__y__) #define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__)) typedef long long ll; typedef unsigned long long ull; typedef long double ld; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int MOD = 1e9 + 7; const int INF = 0x3f3f3f3f; const int N = 3e5 + 7; vector<int> p[N]; int deep[N]; int fa[N][20]; //log2(100000) = 16. void dfs(int x, int y) { //dfs求到深度以及预处理x的倍增数组 fa[x][0] = y; deep[x] = deep[y] + 1; for (int i = 1; i < 20; ++i) fa[x][i] = fa[fa[x][i - 1]][i - 1]; for (int i = 0; i < p[x].size(); ++i) { int tmp = p[x][i]; if (tmp != y) dfs(tmp, x); } } int lca(int x, int y) { if (deep[x] < deep[y]) swap(x, y); for (int i = 19; i >= 0; --i) if (deep[fa[x][i]] >= deep[y]) x = fa[x][i]; //调整到同一深度 if (x == y) return x; for (int i = 19; i >= 0; --i) if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i]; return fa[x][0]; } int dis(int x, int y) { return deep[x] + deep[y] - 2 * deep[lca(x, y)]; } int main() { int n = read(); for (int i = 1; i < n; ++i) { int u = read(), v = read(); p[u].push_back(v); p[v].push_back(u); } dfs(1, 0); int u = read(), v = read(); int T = read(); while (T--) { int x = read(), y = read(); int ans = dis(x, y); ans = min(ans, dis(x, u) + dis(y, v)); ans = min(ans, dis(x, v) + dis(y, u)); print(ans); } return 0; }
每日一题 文章被收录于专栏
每日一题