首页
题库
公司真题
专项练习
面试题库
在线编程
面试
面试经验
AI 模拟面试
简历
求职
学习
基础学习课
实战项目课
求职辅导课
专栏&文章
竞赛
我要招人
发布职位
发布职位、邀约牛人
更多企业解决方案
AI面试、笔试、校招、雇品
HR免费试用AI面试
最新面试提效必备
登录
/
注册
Sanyu6
南京大学 推荐算法
发布于安徽
关注
已关注
取消关注
@苏学算法:
2023届校招算法岗知识超全总结
又是一年「金三银四」,在此为今年校招的同学准备了一份笔面试经验大礼包。 去年我发过一篇 论机械狗如何硬卷算法岗,主要是机械转互联网的经验分享。 本文主要面向搜推广nlp岗位的同学。 总体而言,个人认为算法岗要找的好,除了本身的长期积累沉淀的硬实力之外(Paper,比赛,实习,项目),主要考核的就是两个方面的能力:基础扎实程度和前沿知识广度。 文章内容包括四个部分:基础能力(基础扎实程度)、搜推知识(前沿知识广度)、nlp知识(前沿知识广度)、总结。其中,基础部分变化不大,前沿知识部分相较于我当年校招时变化较大,在此做了更新,希望能够帮助到大家。 1. 基础能力 1.1 Coding基础 Leetcode刷200题+剑指offer(可在牛客网刷),尤其是链表、树、动规。做信息竞赛的可忽略。这部分其实在笔试阶段和一面阶段都会涉及,是考核基础能力的关键一环。尤其是一面的时候,如果没有做出来代码题,其实挺影响面试官给分的。题目难度视具体情况而变,大部分情况下"中等题"即可,当然实习和校招、不同公司都会有所差别。如果是博士,这个环节可能不会做硬性要求。 1.2 机器学习基础 机器学习基础变化不大。当年我主要看的李航老师的统计学习方法(LR,SVM,EM,最大熵,集成学习等)),值得反复看好几遍,每一遍都会加深理解;尤其是学习理论:贝叶斯决策理论/假设空间概念/经验风险, 结构风险/各类损失函数之间的区别与联系/极大似然估计, 最大后验估计, 贝叶斯估计的区别与联系。此外,还涉及一些通用的基础能力,例如: 树模型系列论文深入理解,gbdt,xgboost,lightgbm,catboost; 深度学习基础:过拟合问题、收敛性问题,dropout,bn,ln等;学习器,各种optimizer原理及对比;BP原理;各种激活函数等,最好用numpy手写一遍MLP,包括train+infer。 评估体系:Precision, RecallF1, AUC, ndcg,涉及如何选择、指标的内涵、指标和样本分布关系、离线验证等。 这个部分重点关注原理+推导。 关于面试重点: 树模型知识:很爱问的知识。推荐wepon大神的总结:GBDT算法原理与系统设计简介:http://wepon.me/files/gbdt.pdf,这份资料似乎链接打不开了。 贝叶斯决策理论个人觉得非常重要,是机器学习/深度学习等各类学科的基础。这里头最重要的MLE, MAP, 贝叶斯估计的区别与联系,参考李文哲老师的总结:机器学习中的MLE、MAP、贝叶斯估计 1.3 数学基础 数学题,比如贝叶斯公式算后验概率(求概率),优惠券收集问题(求期望),蓄水池问题(采样)等。还包括一些偏智力的题。这类问题主要难在理解题意,对数学中的概率/期望/微积分/极限等知识点会有些要求。之前看到的部分概率题总结,排版有点问题,凑合着看一些题型。有时间可以复习下概统、线代等课程,没时间可以看看别人的总结,比如:互联网面试概率题总结:https://blog.csdn.net/BertDai/article/details/78070092 1.4 工程/大数据基础 如大数据处理或分布式系统原理等。对于大数据题,如:海量数据求中位数等,主要涉及到哈希,堆,bit等数据结构,外加map-reduce编程范式的灵活应用。这类题型的总结百度一下非常多。 2. 搜推广知识 找搜索推荐广告岗位的同学,这部分的学习要同时关注工业界和学术界,尽量从工业界的应用入手,来看看都用了哪些学术界的成果。这部分在面试过程也是必考核的点。 2.1 按照模型演进 传统的方法:LR+GBDT(facebook文章),FM,FFM,LambdaMART。 深度学习的方法:Youtube DNN,Wide & Deep,DeepFM,DIN等。 图模型在推荐上的应用:GE、GNN。 可参考我的万字推荐系统/排序学习和图模型调研(推荐阅读⭐) 推荐系统调研:http://xtf615.com/2018/05/03/recommender-system-survey/ 排序学习调研:http://xtf615.com/2018/12/25/learning-to-rank/ 万字长文 | 图表示学习中的Encoder-Decoder框架 2.2 按照系统漏斗 笔者近年来阅读过的经典文章,值得读一读,对面试很有帮助。 查询理解:搜索上重要模块 业界盘点|Query理解在搜索中的落地技巧 全面理解搜索query:https://zhuanlan.zhihu.com/p/112719984 召回:主要涉及向量化召回、样本选取的艺术、双塔模型、多兴趣召回,还涉及模型索引联合建模等 样本构造:负样本为王:评Facebook的向量化召回算法,召回模型中的负样本构造 向量召回:KDD'21 | 揭秘Facebook升级版语义搜索技术,KDD'21 | 淘宝搜索中语义向量检索技术 多兴趣召回:推荐系统多兴趣召回最新进展 双塔召回:双塔召回模型的前世今生(上),双塔召回模型的前世今生(下) 模型索引联合建模:阿里深度树匹配召回体系演进,字节跳动Deep Retrieval召回模型笔记,TDM到二向箔:阿里妈妈展示广告Match底层技术架构演进 粗排:涉及全链路一致性、双塔粗排、对比学习、蒸馏等 阿里广告技术新突破:面向最终目标的全链路一致性建模 久别重逢话双塔 张俊林:从对比学习视角,重新审视推荐系统的召回粗排模型 知识蒸馏在推荐系统中的应用 精排 阿里妈妈搜索广告预估模型2021思考与实践 万字长文梳理CTR点击预估模型发展过程与关系图谱 你真的懂CTR建模吗? 阿里妈妈搜索广告瘦身之路? 重排 重排序调研 KDD'20 | Airbnb搜索多样化重排序 可以关注一些公众号:推荐道、阿里妈妈技术、美团技术团队、RUC BOX、DataFunTalk、机器学习与推荐算法、图与推荐等,了解业界最新动向。 2.3 按照技术方向 特征工程 谈推荐系统特征工程中的几个高级技巧 特征交互 一文梳理基于Graph的特征交互在CTR预估中的应用 特征交互新路线|阿里 Co-action Network论文解读 多目标建模:ESMM、MMoE、ESSM,PLE等。 多目标学习在推荐系统的应用: https://zhuanlan.zhihu.com/p/291406172 【推荐系统多任务学习MTL】ESMM 论文精读笔记(含代码实现) 【推荐系统多任务学习MTL】MMoE论文精读笔记(含代码实现) 长短期序列建模:DIN、DIEN、SIM、MIMN等。 浅谈行为序列建模 用户行为序列建模方法调研 Recsys'21 | 基于Transformers的行为序列建模 多兴趣建模:MIND、ComiRec等。 推荐系统多兴趣召回最新进展 图模型 2W字长文:漫谈图神经网络推荐系统 对比学习 谈推荐场景下的对比学习 张俊林:从对比学习视角,重新审视推荐系统的召回粗排模型 冷启动 新用户冷启推荐技巧总结 冷启动系统优化与内容潜力预估实践 多模态 十篇文章速览多模态推荐系统的最新进展 因果推断 快手因果推断与实验设计 清华崔鹏 | 因果推断发展、思考和推荐系统应用 其它的方向:模型蒸馏,纠偏、跨域推荐、元学习、多模态等。 关于技术方向,推荐公众号 ReadPapers。据我了解,能够非常及时的推送最新的搜推广新文,虽然只是信息的采集,没有深入的解读,但是对于想快速跟进前沿的同学来说很棒。 2.4 实战 深度CTR模型开源项目: DeepCTR: https://github.com/shenweichen/DeepCTR,可以深入了解各类state of the art的模型以及实现代码细节。 图模型开源项目: DGL:Aws开源更新的更频繁,支持多种深度学习框架,可能更值得关注; PyG:斯坦福开源的pytorch的框架; PGL:百度开源,PaddlePaddle写的; Euler:阿里开源的,可以细致观看各类Encoder实现 (如ShallowEncoder, SageEncoder等);node2vec实现;底层C++图引擎可以关注random walk和alias sampling的实现。仅作为学习。这个框架维护的不够及时,灵活性以及分布式实现上仍然存在很多不足。 各大Top赛事开源方案: KDD 2020 Debias推荐赛题冠军方案 KDD 2021 图模型OGB-LSC开源方案:https://ogb.stanford.edu/kddcup2021/results/ 可以关注一些竞赛大佬的公众号:比如”包包的算法笔记“、”kaggle竞赛宝典“。 3. nlp知识 这部分新工作也是层出不穷,个人可能也没有follow的很快,可能遗漏了一些,可以参考下。 nlp常见的概念:词法、句法、语义等;困惑度等。 了解重要的四大类nlp任务:分类任务、序列标注任务、句子关系判断任务、生成式任务。 传统的模型:语言模型、HMM、CRF、LDA等;当年会问,现在可能不一定会问。 深度学习模型:RNN, Seq2Seq,Transformer。 预训练模型,涉及传统非上下文感知的word2vec系列 (如Glove和PPMI等)、上下文感知的BERT系列、Prompt Tuning、大模型、多模态等。 邱锡鹏老师的survey:PTMs| 2020最新NLP预训练模型综述 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史: https://zhuanlan.zhihu.com/p/49271699 放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器比较: https://zhuanlan.zhihu.com/p/54743941 Prompt Tuning:刘知远老师的分享,Model Knowledge Stimulation with Prompts for Pre-trained Language Models:http://114.215.64.60/~lzy/talks/2021_prompt_tuning_en.pdf 大模型:清华刘知远:大模型「十问」,寻找新范式下的研究方向 多模态预训练:从顶会论文看多模态预训练研究进展 预训练在工业界的应用:相关性模型、交互式BERT/双塔BERT、模型蒸馏、命名实体识别、查询理解等。 对比学习:丹琦女神新作:SimCSE 近年来的其它热点方向,知识图谱,问答QA统一建模,预训练在图像上的应用MAE;MLP/CNN/Transformers之争; 最后推荐一个从各个应用方向出发,follow最新SOTA的网站:http://nlpprogress.com/ 可以关注一些nlp大佬的公众号或博客:苏剑林的博客、夕小遥的卖萌屋、李rumor、高能AI、NewBeeNLP等。 总结 最后总结下,个人认为算法岗要找的好,除了本身的长期积累沉淀的硬实力之外(Paper,比赛,实习,项目),4者至少取其二。 主要考核的就是两个方面的能力: 基础扎实程度 (编程coding基础;ML/DL算法的数学基础):基础扎实意味着围绕某个知识点,面试官不管怎么问,都难不倒。目标是应对笔面试过程中coding以及对知识深度的考察。 前沿知识广度 (follow时下科研趋势,如GNN,BERT,知识图谱,对比学习,因果推断等;以及了解工业界中推荐/搜索/nlp的整体应用和流程等)。以应对面试中的对知识广度、开放性问题的考察。 硬实力有的前提下,这三个方面扎实的话,我觉得拿offer是完全可以的。当然,包括谈吐交流、找对内推人、运气都是技术本身之外非常重要的东西。最近行业变化较大,希望大家都能顺利找到心仪的工作。 最后,需要帮看/改简历和帮内推的同学,欢迎公众号后台私聊我。 更多校招相关文章 超详细|算法岗学习路线大总结 收藏版|最全机器学习优化器Optimizer汇总 阿里一年级算法工程师的工作总结 微软校招面试经历 本硕机械,校招进入腾讯做算法是什么体验 非科班,进入美团做推荐算法是怎样的体验
点赞 25
评论 3
全部评论
推荐
最新
楼层
暂无评论,快来抢首评~
相关推荐
昨天 18:22
华南理工大学 材料研发工程师
我当真了哈哈
笑不活了,太有梗了我gui了
点赞
评论
收藏
分享
07-30 11:23
门头沟学院 Java
当我把招聘软件上的学历改成高中后...
_mos_:
你好溜溜球
点赞
评论
收藏
分享
07-23 20:28
北京大学 硬件开发
是谁的简历如此不垂直,被吐槽。
没错,正是我的,求助各位uu以后的就业方向,简单说说本人心路历程,因为本硕导师都是工艺材料,不想去fab or 研究所,所以一开始投了ic但是找不到,所以为了保底做了两段硬件的实习,第三段本来拿到了新华三的硬件offer,但是因为同时拿到了Cadence的实习offer(以为是ic验证)就没继续实习硬件,进去了才发现是做EDA工具验证,大概有点像软件测试,写Case和脚本验证Cadence工具的稳定性,和电路基本上接触不到,但是好处是能接触到Linux系统(之前没用过),以及全英工作环境很锻炼人,外加组里氛围特别好,而且不打卡,工作压力小,所以还是打算呆一呆。就好奇后面怎么发展,目前想的是央国企和私企,不考公。央国企有推荐的岗位吗。如果去私企的话,因为EDA验证岗位太小众了,后续是不是只能下一段继续找硬件的实习?然后秋招投个类似于华子单板硬件之类的?这个Cadence实习应该不能作为跳板去找ic的实习吧。
投递新华三等公司10个岗位
点赞
评论
收藏
分享
07-07 12:47
门头沟学院 Java
好绝望,
轻度地贫被卡入职,25届应该这么办
码农索隆:
竟然还真有卡体检报告的
点赞
评论
收藏
分享
07-30 11:11
长安大学 产品经理
室友是友,是来搞笑的吧?
性情古怪就算了,我大学室友是我见过酒量最差的人,酒量差就算了,还经常故意发酒疯,有一次我们下完课回寝室,看见她直挺挺躺在寝室水泥地板上一动不动,我们都吓傻了好吗,她嘴里嘟嘟囔囔的,我们还以为她喝了多少,结果一看旁边桌子上放着还剩了半听的菠……萝……啤……还有一室友喜欢坐在床上打坐,然后每次有人经过的时候就突然伸出兰花指说:“消灭你!!!哔哔哔!!!”
你跟室友的关系怎么样?
点赞
评论
收藏
分享
评论
点赞成功,聊一聊 >
点赞
收藏
分享
评论
提到的真题
返回内容
全站热榜
更多
1
...
百度提前批,三面被推迟一周,喜提秋招第一凉
5039
2
...
虾皮秋招一面
2501
3
...
他拿大厂SSP Offer打牌是什么概念啊?25届双非之光
2479
4
...
百度提前批 三面
1986
5
...
7.30百度提前批一面
1715
6
...
小鹏offer
1446
7
...
大家笔试千万不要作弊
1335
8
...
最强本科✌
1230
9
...
上班一周,工资还没拿,先欠公司两千
1207
10
...
百度7.30二面
1196
创作者周榜
更多
正在热议
更多
#
简历上的经历如何包装
#
27908次浏览
798人参与
#
秋招被确诊为……
#
163169次浏览
741人参与
#
中兴秋招
#
204983次浏览
2289人参与
#
工作中哪个瞬间让你想离职
#
62788次浏览
567人参与
#
你最希望上岸的公司是?
#
134911次浏览
705人参与
#
和同事相处最忌讳的是__
#
23600次浏览
241人参与
#
2022毕业即失业取暖地
#
102626次浏览
662人参与
#
2022毕业生求职现身说法
#
89195次浏览
700人参与
#
虾皮求职进展汇总
#
248792次浏览
1835人参与
#
你最近一次加班是什么时候?
#
70959次浏览
350人参与
#
26届的你,投了哪些公司?
#
42028次浏览
473人参与
#
投格力的你,拿到offer了吗?
#
86262次浏览
582人参与
#
你遇到最难的面试题目是_
#
16228次浏览
197人参与
#
我对___祛魅了
#
46478次浏览
425人参与
#
地平线求职进展汇总
#
52611次浏览
369人参与
#
研究所VS国企,该如何选
#
194751次浏览
1819人参与
#
如果校招重来我最想改变的是
#
271716次浏览
2849人参与
#
你跟室友的关系怎么样?
#
6822次浏览
106人参与
#
你的秋招第一面感觉怎么样
#
76632次浏览
591人参与
#
柠檬微趣工作体验
#
6643次浏览
40人参与
#
你最讨厌面试问你什么?
#
27454次浏览
307人参与
牛客网
牛客网在线编程
牛客网题解
牛客企业服务