NLP算法面经16

10.17 蚂蚁 NLP (2+1)
1. 项目+实习
2. 强化学习的发展历程
3. 多头注意力书写
4. Lora的优势
5. 对话的掩码方式,其次是整体计算?
6. deepspeed zero123区别,有没有看过显存占用
7. grpo比dpo和ppo优势在哪?
8. MLA相比GQA的优势?
9. Agent的看法?
10. 跨模态处理的有效方法?
11. Qwen2-VL的框架介绍?
#大模型# #算法# #互联网大厂# 面经 #nlp# 蚂蚁 #阿里# #互联网大厂实习#
全部评论

相关推荐

翻遍各种大模型的实现,虽然结构上可能保留了 dropout 的实现,但是采样概率都设置为 0 了。唯一一个比较新的,还用 Dropout 的模型是 Meta 训练的 Galactica 模型。那为什么现在不用了呢?核心还是要弄清楚 Dropout 的使用场景。Dropout 之前在深度学习当中是一个特别好用的方法,可以防止过拟合,提高泛化。所以说,当模型较大,数据较少的时候,使用 Dropout 是比较合适的。现在大模型处在什么状态呢?✅预训练在预训练阶段,目前可能还是处于欠拟合的状态。之所以说可能,是基于目前公开的一些论文的出的结论。但是现在闭源的公司在采用大量数据合成的情况下,已经训练足够充分或者接近充分也说不定。以 llama 一系列论文为例,训练 llama 1 的时候,龙猫 Scaling law 里面提到 GPT3 是一个训练很不充分的模型。然后给出的数据配比的建议是,10B 的模型要采用 200B 的 token 来训练。但是 llama 1 采用了 7B 的模型,训练量 1T 的 token 发现性能依然有提升。而且预训练所有的语料一般只过一个 epoch,某些特定的领域可能过 2个 epoch,可以认为样本的重复率很低。所以,在数据足够多,多样性足够而且没有太多重复的情况下,大模型在预训练阶段仍然没有过拟合的风险。也就完全不需要采用 dropout。✅Dropout 就完全不需要了么?如果上面的条件不能满足,Dropout 还是有用武之地的。比如前面提到的 Galactica 模型。这个模型和其他大模型不太一样的地方是训练了 4.25 个 epoch,因为他们认为高质量的数据更重要一些,但是又没有那么多,所以就 repeat 数据了。在论文《To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis》 中,详细列举了数据 Repeat 对训练 LLM 的影响,并且证明了 Dropout 可以缓解数据重复带来的性能损失。在文章《Can LLMs learn from a single example?》中,也提到了在 SFT 的时候,少量的重复数据就会降低模型的性能。这也符合常理,SFT 的数据分布和预训练的通常是不太一样的,重复的数据会让模型拟合新的分布,从而忘掉旧的分布。文中同样也提到 Dropout 可以缓解数据重复带来的影响。所以 Dropout 在数据量较少,多样性不高,需要 repeat 的场景下,依然是一个减少过拟合的很方便的手段。比如现在已经有一些在 LoRA 微调的时候采用 Dropout 的研究了。#算法# #简历中的项目经历要怎么写# #算法岗面试# #互联网大厂招聘# #大模型# #大模型面经#
点赞 评论 收藏
分享
评论
点赞
1
分享

创作者周榜

更多
牛客网
牛客企业服务