中途加入只写了1,3,第二题没看懂要干啥第一题:优先队列 + 贪心可以想到贪心,先把所有的数给拆出来,比如[11, 299],拆成[9,9,2,1,1],然后贪心,把大的数放在位数高的那个元素就行了,比如例子中可以变成[(1,2), (2,3)]表示第一个数有两位,第二个数有三位,然后放入优先队列,首先取出第二个元素,将第三位变成9,现在第二个元素只剩两位了,继续放入优先队列,按照该顺序写就OK。代码如下:#include <bits/stdc++.h>using namespace std;const int N = 2e5 + 10;int a[N] ,h[10];pair<int, int> b[N];int main() {int n;cin >> n;priority_queue<pair<int, int>> pq;for (int i = 0; i < n; i ++) {cin >> a[i];b[i].second = i;while (a[i]) {h[a[i] % 10] ++;a[i] /= 10;b[i].first ++;}pq.push(b[i]);}while(pq.size() > 0) {pair<int, int> t = pq.top();pq.pop();int num = 0;for (int i = 9; i >= 0; i --) {if (h[i] != 0) {h[i] --;num = i;break;}}a[t.second] = a[t.second] * 10 + num;t.first--;if (t.first !=0) {pq.push(t);}}long long res = 0;for (int i = 0; i < n; i ++) res += a[i];cout << res;}第三题:组合数首先要推公式,如果两个数a[i]和a[j]之间有n个0,设z = a[j] - a[i], 有多少种可能的序列,设为f(z, n),C是组合数。当n = 1 时,记为f(z, 1),很简单,该0可能是a[i] - a[j]之间的任何数,有z + 1 种可能,f(z, 1) = z + 1 = C(z+1, 1)。当n = 2 时,固定第一个0,如果第一个0为x,那么第二个0就和n = 1 时一样,此时枚举第一个0从[0-z],f(z, 2) = f(z,1) +f(z-1,1) + ...+f(1, 1) + f(0, 1) = 1 +... +z+1 = C(z+2, 2)。同理, n=3时,同理枚举第一个0。f(z, 3) = f(z, 2) +... f(0, 2) = C(z+2, 2) + C (z + 1, 2) + ... C(2, 2) = C(z+3, 3)可以看出来f(z, n) = C(z + n, n) = (z +n)!/(n! & z!);#include <bits/stdc++.h>using namespace std;#define int long longconst int p = 1e9 + 7;const int N = 6e5 + 10;int a[N];int mul[N], dmul[N];int qs(int a, int b) {int res = 1;while (b) {if (b&1) res = res * a % p;a = a * a % p;b >>= 1;}return res;}int C(int n, int m) {int cc = 1;for (int i = n - m + 1; i <= n; i ++) cc = cc * i %p;return cc * dmul[m] % p;}int lucas(int n, int m) {if (m == 0) return 0;int a = n % p, b = m % p;if (b > a) return 0;return C(a, b) * lucas(n/p, m /p) % p;}signed main() {int n; cin >> n;vector<int> v;int res = 1;mul[0] = dmul[0] = 1;for (int i = 1 ; i < N ; i ++) {mul[i] = mul[i - 1] * i % p;dmul[i] = qs(mul[i], p - 2);}for (int i = 1 ;i <= n; i ++) cin >> a[i];for (int i = 1 ; i < n; ) {if (a[i] == 0) {int j = i;while (a[j] == 0) j++;int d = a[j] - a[i - 1];int z = j - i;res = res * C(z + d, z) % p;i = j;} else i++;}cout << res << '\n';}