博主有论文吗
点赞 评论

相关推荐

面的是字节的国际电商部门感觉是卷中卷了被狠狠拷打了😭面试问题:- 解释一下ROC曲线与PR曲线的关系、ROC曲线与PR曲线的适用场景- 介绍一下贝叶斯定理(贝叶斯公式和全概率公式)- 考了一个概率题:已知一个随机发生器,生成 0 的概率为  p ,生成 1 的概率为  1 - p 。请构造一个新的随机发生器,使其生成 0 和 1 的概率均为 1/2。- (针对简历提问)了解矩阵分解吗 MF、LFM吗- 训练模型的时候,怎么才能知道模型是不是过拟合了?除了看训练集和测试集的准确率,还有哪些方法可以防止过拟合?比如正则化、交叉验证这些,能不能展开讲讲怎么用?- 推荐系统里老听到CTR预估和序列推荐模型,讲讲这些模型是干啥的?比如DIN、DIEN这些CTR模型是怎么捕捉用户兴趣的?还有GRU4Rec、Caser这些序列模型是怎么处理用户行为序列的?它们各自解决了什么问题?代码题:- 给定整数数组 nums,求最大和的连续子数组,并返回该最大和。(最大子数组和LeetCode53)- 手写一个二分类交叉熵bce,使用np(只把bce的公式写出来了,然后拷打怎么计算梯度,最好熟悉一下二分类梯度怎么回传的,被拷打到了这里)一面一般是组内员工,平时比较忙,这场面试约在的中午11点,所以如果能够把你的项目介绍得详细一点,就容易不让面试官问太多问题,一般我大概是2-3min自我介绍,然后再10min介绍一个项目(2-3个项目说完差不多就去一大半面试时间了),然后最后面试官不是主动型+忙着去吃饭,就会问些常见的面经,然后碰巧见过的爆率很高,然后直接吟唱。这里拷打了概率类型的问题,印象里至少有4/32次面试提到了类似的概率场景题目,建议也是稍微复习一下,至少看看基础的内容。国际电商(tiktok)据说晋升不错(同时也卷),毕竟是出海业务,但是是真的难进(听说很多清北大佬都挂了),不太懂想要招什么人(岗位名额实在太少)  
查看8道真题和解析 面试问题记录
点赞 评论 收藏
分享
1️⃣一面1.自我介绍和项目介绍2.介绍一下了解的大模型有哪些,这些模型在结构上有什么差异3.说一下大模型常用的位置编码有哪些,各有什么优缺点4.介绍一下大模型的预训练后训练以及推理是怎么做的,并且详细问了 RLHF 的做法,包括 PPO 算法的原理,以及 DPO 和 PPO 的区别5.大模型的超长上下文是怎么做的,比如说 KIMI6.大模型智能体是怎么工作的,有哪些组件7.场景题:如何训练一个大模型,可以做到精确的提取摘要8.代码:股票的四个题121. 买卖股票的最佳时机122. 买卖股票的最佳时机 II123. 买卖股票的最佳时机 III188. 买卖股票的最佳时机 IV✴️整体来说一面偏基础,没有太多发散性的问题,整个面试一个半小时多2️⃣二面1.自我介绍2.因为之前是做 CV 的,所以面试官问了 CV 和 NLP 的区别和联系,在 Transformer 的大背景下,CV、NLP,包括语音等,能否实现大一统3.训练大模型的时候数据怎么清洗,怎么处理,怎么配比,怎样操作能更容易使模型达到更好的性能4.什么是大模型的幻觉,如何减轻幻觉问题5.大模型的复读问题是怎么产生的,业内一般有什么解决办法6.大模型的工具调用怎么实现7.Agent 有哪几部分构成,了解哪些具体的实现方法8.开放题:之前训练大模型的时候遇到过什么困难,你是怎么解决的9.代码:实现一个 Tokenizer,只能用 PyTorch 基础语法✴️二面相比于一面更加看重综合素质,喜欢考察分析问题解决问题的能力,二面也面试了一个多小时,面试官还是挺专业的。3️⃣三面1.首先过项目,但是问的特别细致,尤其是一个 Agent 的项目,从背景,到动机,再到做法,最后的结果,都问的非常细,大概有半个小时的时间2.开放题:你觉得当前大模型还存在怎样的问题,有什么解决办法吗3.开放题:让你自己设计一个 Agent,会怎么做,为什么这样做4.找工作比较在意的点是什么,除了薪资还有什么5.对文心一言这个产品了解吗,有哪些优点和值得改进的点6.如果给你发 Offer,你到这个团队能做出什么贡献✴️三面整体来说更加综合,不止有一些技术问题,还有职业规划这些问题,更加考察整体的能力。面试官应该是这个团队的大老板,看问题更加系统和全面,整体面下来还是比较有压力的。📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
百度三面308人在聊 查看26道真题和解析
点赞 评论 收藏
分享
牛客网
牛客企业服务