大佬最后选了哪里
点赞 评论

相关推荐

✅一面1.首先是自我介绍和过项目,面试官还一起探讨项目用到的方法,可行性之类的2.介绍一下 CLIP3.了解 LoRA 吗,LoRA 微调的原理是什么4.了解哪些多模态大模型,简要介绍几个5.BLIP 的三个损失函数分别是什么,数据是怎样清洗的6.BLIP2 相对于 BLIP 有哪些改进,BLIP3 又有哪些改进7.Qwen-VL 的三个训练流程分别是什么,有什么作用8.视觉编码器和 LLM 连接时,使用 BLIP2 中 Q-Former 那种复杂的 Adaptor 好还是 LLaVA 中简单的 MLP 好,说说各自的优缺点9.代码:实现多头自注意力✴️一面比较常规,几乎都是八股问题,我觉得只要了解常见的多模态大模型都问题不大,主要还是要理解各个模型设计的动机是什么,这也是面试最喜欢考察的✅二面1.自我介绍和过项目,简要问了项目中使用某些方法的动机,以及是否会导致其他的问题2.了解 Transformer 吗,编码器和解码器的注意力有什么区别,在计算注意力中时除以 \sqrt{d_k} 的原因是什么3.后来有哪些比较经典的基于 Transformer 的语言模型,Qwen 相比于原始 Transformer 有哪些结构上的改动,Qwen2 又有哪些改进4.了解 RLHF 吗,DPO 和 PPO 有什么区别,Loss 是什么样的,各自的优缺点是什么5.介绍一下 CLIP,还了解什么其他的对比学习方法6.开放题:了解哪些多模态大模型,目前多模态大模型最大的问题是什么7.代码:1143. 最长公共子序列✴️二面其实也偏常规,几乎也都是八股问题,但是也考察了一些对模型的理解以及知识面的广度,整体来说比一面的难度大一些✅三面1.自我介绍,然后详细过了一下项目2.了解哪些大模型和多模态大模型,然后就聊了大模型这一路是怎么发展过来的,Transformer、BERT、GPT、LLaMA、Qwen 这些,以及当时的 o1 推理模型3.平常有尝试过训练过大模型吗,规模小一点的也没关系4.聊天,包括职业规划等等✴️三面比较轻松,面试官说知识点前面两面都考察过了,三面就轻松一些,大概40来分钟吧📳**************************************。
查看20道真题和解析
点赞 评论 收藏
分享
点赞 评论 收藏
分享
1️⃣一面时间:9.12  时长:1hcode:统计岛屿数量、最大岛屿面积,DFS方法解了然后介绍实习项目,面试官非常耐心地听,没有打断八股1.bert和gpt的区别?(从模型架构、训练方式、使用场景方面回答的)2.训练/微调一个LLM的流程?3.实习时用的 megatron 框架吗,对分布式训练框架了解多少?(回答了deepspeed和megatron区别,以及几种并行方式,以及deepspeed的三种zero)4.了解强化学习吗,跟SFT有什么区别?5.反问:业务,对岗位的期望💣评价:有点紧张,算法题有一个小失误没注意到2️⃣二面时间:9.14  时长:1h八股1.写一下 attention 公式(代码实现了下)2.训练时为什么要mask,推理时也需要吗?两处有什么区别?推理时的sequence length和训练时一样吗3.transformer和传统seq2seq模型有什么区别?4.计算attention时为什么要除以d_k,这个d_k的含义是?5.attention计算时还有哪些scale处理?6.attention中softmax函数作用、公式、为什么有减去最大值的处理?换个函数还能这样处理吗?7.解释数值上溢、下溢问题8.讲一下prompt书写的经验,如何判断prompt是否达标,如何改进prompt9.讲一下SFT,会对哪部分计算loss?为什么?10.讲一下deepspeed11.训练用一个7b模型要占用多少显存?不同zero阶段能够节省多少显存?12.训练模型时用了几张卡,有遇到什么异常中断问题吗?反问: 在乎候选人什么能力?对面试表现有哪些改进意见?💣评价: 基础不够扎实,网上有的知识都能回答上来,在同龄人里算比较优秀,欠缺一些多机多卡实践经验。  
查看17道真题和解析
点赞 评论 收藏
分享
牛客网
牛客网在线编程
牛客网题解
牛客企业服务