无论文秋招——群核科技一面
业务方向有点像贝壳的室内设计
空间理解
问项目,介绍的比较细
八股
PPO 和 GRPO 的区别
ds zero 1 2 3
做题
计算X,Y的欧氏距离,用torch,需要注意 unsqeeze()扩展维度以便broadcast,以及dim=2
torch.sqrt(torch.sum((X.unsqeeze(1) - Y.unsqeeze(0))**2),dim=2)
import torch X = torch.tensor([[1.0, 2.0], [3.0, 4.0]]) # 形状 [2, 2] Y = torch.tensor([[1.0, 1.0], [2.0, 2.0], [4.0, 4.0]]) # 形状 [3, 2] dist = torch.sqrt(torch.sum((X.unsqueeze(1) - Y.unsqueeze(0)) ** 2, dim=2)) print(dist)
torch.cdist(X, Y)
用 torch.optim.SGD 求 X**2-2x+1的最小值
import torch
def loss_function():
x = torch.trnsor([5],require_grad=True)
optimzer=torch.optim.SGD(x,lr=1e-2)
for i in range(1000):
loss= X**2-2x+1
optimzer.zero_grad()
loss.backward()
optimzer.step()
return x
gpt写法
import torch
def loss_function():
x = torch.tensor([5.0], requires_grad=True)
optimizer = torch.optim.SGD([x], lr=1e-2)
for i in range(1000):
loss = (x ** 2 - 2 * x + 1).sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()
return x.item()
result = loss_function()
print(result)
