题解 | 单神经元
单神经元
https://www.nowcoder.com/practice/8903b7c94c6f4f4f963b7d05e1e397c7
import math import numpy as np def softmax(x): return 1/(1+math.exp(-1*x)) def single_neuron_model(features, labels, weights, bias): probabilities = [] diff = 0 for i in range(len(features)): z = 0 for j in range(len(features[i])): z += features[i][j] * weights[j] z = softmax(z + bias) z = round(z,4) probabilities.append(z) diff += (z - labels[i])**2 mse = diff / len(features) mse = round(mse, 4) return probabilities, mse if __name__ == "__main__": features = np.array(eval(input())) labels = np.array(eval(input())) weights = np.array(eval(input())) bias = float(input()) print(single_neuron_model(features, labels, weights, bias))