题解 | #密码验证合格程序#

密码验证合格程序

https://www.nowcoder.com/practice/184edec193864f0985ad2684fbc86841

import sys

# 读取全部input,并且根据换行符切割新password
passwords = sys.stdin.read().strip().splitlines()

def length_check(password):
    # 检查密码长度是否在规定长度内
    return "OK" if 8 < len(password) < 100 else "NG"

def variety_check(password):
    # 检查是否存在4种中至少3种特殊符号
    # 大小写,数字,特殊字符(不包含空格)
    has_upper = any(char.isupper() for char in password)
    has_lower = any(char.islower() for char in password)
    has_digit = any(char.isdigit() for char in password)
    has_special = any(not char.isalnum() for char in password)

    # 统计一共多少种不同的字符存在
    total_types = sum([has_upper, has_lower, has_digit, has_special])
    return "OK" if total_types >= 3 else "NG"

def duplicate_check(password):
    # 检查是否存在超过3个的重复字母
    for i in range(len(password) - 2):
        if password[i:i + 3] in password[i + 1:]:
            return "NG"  # If a duplicate substring is found
    return "OK"

# 检查每个密码并且打印最终结果
for password in passwords:
    if (
        length_check(password) == "OK" and
        variety_check(password) == "OK" and
        duplicate_check(password) == "OK"
    ):
        print("OK")
    else:
        print("NG")

全部评论

相关推荐

最终还是婉拒了小红书的offer,厚着脸皮回了字节。其实这次字节不管是组内的氛围、HR的沟通体验,都比之前好太多,开的薪资也还算过得去,这些都是让我下定决心的原因之一。但最核心的,还是抵不住对Agent的兴趣,选择了Ai&nbsp;Coding这么一个方向。因为很多大佬讲过,在未来比较火的还是属于那些更加垂类的Agent,而Ai&nbsp;Coding恰好是Coding&nbsp;Agent这么一个领域,本质上还是程序员群体和泛程序员群体这个圈子的。目前也已经在提前实习,也是全栈这么一个岗位。就像最近阿里P10针对前端后端等等不再那么区分,确实在Agent方向不太区分这个。尤其是我们自己做AI&nbsp;Coding的内容,基本上90%左右的内容都是AI生成的,AI代码仓库贡献率也是我们的指标之一。有人说他不好用,那肯定是用的姿态不太对。基本上用对Skill、Rules&nbsp;加上比较好的大模型基本都能Cover你的大部分需求,更别说Claude、Cursor这种目前看来Top水准的Coding工具了(叠甲:起码在我看来是这样)。所以不太区分的主要原因,还是针对一些例如Claude&nbsp;Code、Cursor、Trae、Codex、CC等一大堆,他们有很多新的概念和架构提出,我们往往需要快速验证(MVP版本)来看效果。而全栈就是这么快速验证的一个手段,加上Ai&nbsp;Coding的辅助,目前看起来问题不大(仅仅针对Agent而言)。而且Coding的产品形态往往是一个Plugin、Cli之类的,本质还是属于大前端领域。不过针对业务后端来看,区分还是有必要的。大家很多人也说Agent不就是Prompt提示词工程么?是的没错,本质上还是提示词。不过现在也衍生出一个新的Context&nbsp;Eneering,抽象成一种架构思想(类比框架、或者你们业务架构,参考商品有商品发布架构来提效)。本质还是提示词,但是就是能否最大化利用整个上下文窗口来提升效果,这个还是有很多探索空间和玩法的,例如Cursor的思想:上下文万物皆文件,&nbsp;CoWork之类的。后续也有一些Ralph&nbsp;Loop啥的,还有Coding里面的Coding&nbsp;Act姿态。这种才是比较核心的点,而不是你让AI生成的那提示词,然后调用了一下大模型那么简单;也不是dify、LangGraph搭建了一套workflow,从一个node走到另外一个node那么简单。Agent和WorkFLow还是两回事,大部分人也没能很好的区分这一点。不过很多人说AI泡沫啥啥啥的,我们ld也常把这句话挂在嘴边:“说AI泡沫还是太大了”诸如此类。我觉得在AI的时代,懂一点还是会好一点,所以润去字节了。目前的实习生活呢,除了修一些Tools的问题,还包括对比Claude、Cursor、Trae在某些源码实现思想上的点,看看能不能迁移过来,感觉还是比较有意思。不过目前组内还是主要Follow比较多,希望下一个阶段就做一些更有创新的事情哈哈。这就是一个牛马大学生的最终牧场,希望能好好的吧。说不定下次发的时候,正式AI泡沫结束,然后我又回归传统后端这么一个结局了。欢迎交流👏,有不对的🙅不要骂博主(浅薄的认知),可以私聊交流
码农索隆:和优秀的人,做有挑战的事
点赞 评论 收藏
分享
评论
1
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务