题解 | #牛群的树形结构重建#
牛群的树形结构重建
https://www.nowcoder.com/practice/bcabc826e1664316b42797aff48e5153
/** * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * }; */ #include <sys/types.h> class Solution { public: /** * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可 * * * @param inOrder int整型vector * @param postOrder int整型vector * @return TreeNode类 */ TreeNode* build(vector<int>& inOrder, int l1, int r1, vector<int>& postOrder, int l2, int r2) { if (l1 > r1) return nullptr; TreeNode* root = new TreeNode(postOrder[r2]); // 找到切分左右的位置 int index; for (int i = l1; i <= r1; i++) { if (inOrder[i] == postOrder[r2]) { index = i; break; } } // 左树的元素索引位置为l1=>index-1,对应后续遍历的数组中,根据长度来确定起止位置l2=>l2+(index-l1-1),其中(index-l1-1)表示的是元素的个数,即为长度 root->left = build(inOrder, l1, index-1, postOrder, l2, l2+index-l1-1); // 右树的起止位置为index+1=>r1,对应后续数组中的起止位置为l2+index-l1=>r2-1 root->right = build(inOrder, index+1, r1, postOrder, l2+index-l1, r2-1); return root; } TreeNode* buildTree(vector<int>& inOrder, vector<int>& postOrder) { // write code here int l1 = 0, r1 = inOrder.size()-1; int l2 = 0, r2 = postOrder.size()-1; return build(inOrder, l1, r1, postOrder, l2, r2); } };