题解 | #编号子回文II# java

编号子回文II

https://www.nowcoder.com/practice/62e2d96d7b534d22a9b754005a4138a5

import java.util.*;


public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     *
     * @param s string字符串
     * @return int整型
     */
    public int longestPalindromeSubseq (String s) {
        // write code here
        int n = s.length();
        int[][] dp = new int[n][n];

        // 单个字符是回文子序列
        for (int i = 0; i < n; ++i) {
            dp[i][i] = 1;
        }

        // 从长度为 2 的子序列开始递推
        for (int len = 2; len <= n; ++len) {
            for (int i = 0; i < n - len + 1; ++i) {
                int j = i + len - 1;
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }

        return dp[0][n - 1];
    }
}

使用的是Java编程语言。

该题考察的知识点是动态规划。

使用一个二维数组 dp 来保存子问题的解。其中 dp[i][j] 表示从字符串第 i 个字符到第 j 个字符的最长回文子序列的长度。

遍历字符串的每个字符,将所有单个字符作为回文子序列,即 dp[i][i] = 1

从长度为2的子序列开始,通过递推求解更长的回文子序列。对于每个子序列,如果头尾字符相同,则当前子序列的最长回文子序列长度为内部子序列的最长回文子序列长度加上2;如果头尾字符不同,则当前子序列的最长回文子序列长度为去掉头字符或去掉尾字符的子序列的最长回文子序列长度的较大值。具体地,通过状态转移方程 dp[i][j] = dp[i + 1][j - 1] + 2dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]) 来更新 dp[i][j] 的值。

返回整个字符串的最长回文子序列的长度,即 dp[0][n - 1],其中 n 为字符串的长度。

全部评论

相关推荐

不愿透露姓名的神秘牛友
07-08 12:10
点赞 评论 收藏
分享
05-21 15:47
门头沟学院 Java
浪漫主义的虹夏:项目有亮点吗,第一个不是纯玩具项目吗,项目亮点里类似ThreadLocal,Redis储存说难听点是花几十分钟绝大部分人都能学会,第二个轮子项目也没体现出设计和技术,想实习先沉淀,好高骛远的自嗨只会害了自己
点赞 评论 收藏
分享
不愿透露姓名的神秘牛友
05-28 12:15
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务