算法面试高频知识点:经典模型&&热门模型总结

----【经典模型&&热门模型】----

【一】目标检测中IOU的相关概念与计算

IoU(Intersection over Union)即交并比,是目标检测任务中一个重要的模块,其是GT bbox与pred bbox交集的面积 / 二者并集的面积

下面我们用坐标(top,left,bottom,right),即左上角坐标,右下角坐标。从而可以在给定的两个矩形中计算IOU值。

def compute_iou(rect1,rect2):
  # (y0,x0,y1,x1) = (top,left,bottom,right)
  S_rect1 = (rect1[2] - rect1[0]) * (rect1[3] - rect1[1])
  S_rect2 = (rect2[2] - rect2[0]) * (rect2[3] - rect1[1])

  sum_all = S_rect1 + S_rect2
  left_line = max(rect1[1],rect2[1])
  right_line = min(rect1[3],rect2[3])
  top_line = max(rect1[0],rect2[0])
  bottom_line = min(rect1[2],rect2[2])

  if left_line >= right_line or top_line >= bottom_line:
    return 0
  else:
    intersect = (right_line - left_line) * (bottom_line - top_line)
    return (intersect / (sum_area - intersect)) * 1.0

【二】目标检测中NMS的相关概念与计算

在目标检测中,我们可以利用非极大值抑制(NMS)对生成的大量候选框进行后处理,去除冗余的候选框,得到最具代表性的结果,以加快目标检测的效率。

如下图所示,消除多余的候选框,找到最佳的bbox:

非极大值抑制(NMS)流程:

  1. 首先我们需要设置两个值:一个Score的阈值,一个IOU的阈值。

  2. 对于每类对象,遍历该类的所有候选框,过滤掉Score值低于Score阈值的候选框,并根据候选框的类别分类概率进行排序:

  3. 先标记最大概率矩形框F是我们要保留下来的候选框。

  4. 从最大概率矩形框F开始,分别判断A~E与F的交并比(IOU)是否大于IOU的阈值,假设B、D与F的重叠度超过IOU阈值,那么就去除B、D。

  5. 从剩下的矩形框A、C、E中,选择概率最大的E,标记为要保留下来的候选框,然后判断E与A、C的重叠度,去除重叠度超过设定阈值的矩形框。

  6. 就这样重复下去,直到剩下的矩形框没有了,并标记所有要保留下来的矩形框。

  7. 每一类处理完毕后,返回步骤二重新处理下一类对象。

import numpy as np

def py_cpu_nms(dets, thresh):
  #x1、y1(左下角坐标)、x2、y2(右上角坐标)以及score的值
  x1 = dets[:, 0]
  y1 = dets[:, 1]
  x2 = dets[:, 2]
  y2 = dets[:, 3]
  scores = dets[:, 4]

  #每一个候选框的面积
  areas = (x2 - x1 + 1) * (y2 - y1 + 1)
  #按照score降序排序(保存的是索引)
  order = scores.argsort()[::-1]

  keep = []
  while order.size > 0:
    i = order[0]
    keep.append(i)
    #计算当前概率最大矩形框与其他矩形框的相交框的坐标,会用到numpy的broadcast机制,得到向量
    xx1 = np.maximum(x1[i], x1[order[1:]])
    yy1 = np.maximum(y1[i], y1[order[1:]])
    xx2 = np.minimum(x2[i], x2[order[1:]])
    yy2 = np.minimum(y2[i], y2[order[1:]])

    #计算相交框的面积,注意矩形框不相交时w或h算出来会是负数,用0代替
    w = np.maximum(0.0, xx2 - xx1 + 1)
    h = np.maximum(0.0, yy2 - yy1 + 1)
    inter = w * h
    #计算重叠度IOU:重叠面积 / (面积1 + 面积2 - 重叠面积)
    ovr = inter / (areas[i] + areas[order[1:]] - inter)

    #找到重叠度不高于阈值的矩形框索引
    inds = np.where(ovr < thresh)[0]
    # 将order序列更新,由于前面得到的矩形框索引要比矩形框在原order序列中的索引小1,所以要加1操作
    order = order[inds + 1]

  return keep

【三】One-stage目标检测与Two-stage目标检测的区别?

Two-stage目标检测算法:先进行区域生成(region proposal,RP)(一个有可能包含待检物体的预选框),再通过卷积神经网络进行样本分类。其精度较高,速度较慢。

主要逻辑:特征提取—>生成RP—>分类/定位回归。

常见的Two-stage目标检测算法有:Faster R-CNN系列和R-FCN等。

One-stage目标检测算法:不用RP,直接在网络中提取特征来预测物体分类和位置。其速度较快,精度比起Two-stage算法稍低。

主要逻辑:特征提取—>分类/定位回归。

常见的One-stage目标检测算法有:YOLO系列、SSD和RetinaNet等。

【四】哪些方法可以提升小目标检测的效果?

  1. 提高图像分辨率。小目标在边界框中可能只包含几个像素,那么能通过提高图像的分辨率以增加小目标的特征的丰富度。

  2. 提高模型的输入分辨率。这是一个效果较好的通用方法,但是会带来模型inference速度变慢的问题。

  3. 平铺图像。

  1. 数据增强。小目标检测增强包括随机裁剪、随机旋转和镶嵌增强等。

  2. 自动学习anchor。

  3. 类别优化。

【五】ResNet模型的特点以及解决的问题?

每次回答这个问题的时候,都会包含我的私心,我喜欢从电气自动化的角度去阐述,而非计算机角度,因为这会让我想起大学时代的青葱岁月。

ResNet就是一个差分放大器。ResNet的结构设计,思想逻辑,就是在机器学习中抽象出了一个差分放大器,其能让深层网络的梯度的相关性增强,在进行梯度反传时突出微小的变化。

模型的特点则是设计了残差结构,其对模型输出的微小变化非常敏感。

为什么加入残差模块会有效果呢?

假设:如果不使用残差模块,输出为,期望输出为,如果想要学习H函数,使得,这个变化率比较低,学习起来是比较困难的。

但是如果设计为 ,进行一种拆分,使得,那么学习目标就变为让,一个映射函数学习使得它输出由0.1变为0,这个是比较简单的。也就是说引入残差模块后的映射对输出变化更加敏感了。

进一步理解:如果,现在继续训练模型,使得映射函数。变化率为:,如果不用残差模块的话可能要把学习率从0.01设置为0.0000001。层数少还能对付,一旦层数加深的话可能就不太好使了。

这时如果使用残差模块,也就是变化为。这个变化率增加了100%。明显这样的话对参数权重的调整作用更大。

【六】ResNeXt模型的结构和特点?

ResNeXt模型是在ResNet模型的基础上进行优化。其主要是在ResNeXt中引入Inception思想。如下图所示,左侧是ResNet经典结构,右侧是ResNeXt结构,其将单路卷积转化成多支路的多路卷积,进行分组卷积

ResNet与ResNeXt结构对比

作者进一步提出了ResNeXt的三种等价结构,其中c结构中的分组卷积思想就跃然纸上了。

最后我们看一下ResNeXt50和ResNet50结构上差异的对比图:

ResNeXt论文:《Aggregated Residual Transformations for Deep Neural Networks》

【七】MobileNet系列模型的结构和特点?

MobileNet是一种轻量级的网络结构,主要针对手机等嵌入式设备而设计。MobileNetv1网络结构在VGG的基础上使用depthwise Separable卷积,在保证不损失太大精度的同时,大幅降低模型参数量。

Depthwise separable卷积是由Depthwise卷积和Pointwise卷积构成。
Depthwise卷积(DW)能有效减少参数数量并提升运算速度。但是由于每个特征图只被一个卷积核卷积,因此经过DW输出的特征图只包含输入特征图的全部信息,而且特征之间的信息不能进行交流,导致“信息流通不畅”。Pointwise卷积(PW)实现通道特征信息交流,解决DW卷积导致“信息流通不畅”的问题。

Depthwise separable卷积

Depthwise Separable卷积和标准卷积的计算量对比:

相比标准卷积,Depthwise Separable卷积可以大幅减小计算量。并且随着卷积通道数的增加,效果更加明显。

并且Mobilenetv1使用stride=2的卷积替换池化操作,直接在卷积时利用stride=2完成了下采样,从而节省了卷积后再去用池化操作去进行一次下采样的时间,可以提升运算速度。

MobileNetv1论文:《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications》

【八】MobileNet系列模型的结构和特点?(二)

MobileNetV2在MobileNetV1的基础上引入了Linear Bottleneck 和 Inverted Residuals

MobileNetV2使用Linear Bottleneck(线性变换)来代替原本的非线性激活函数,来捕获感兴趣的流形。实验证明,使用Linear Bottleneck可以在小网络中较好地保留有用特征信息。

Inverted Residuals与经典ResNet残差模块的通道间操作正好相反。由于MobileNetV2使用了Linear Bottleneck结构,使其提取的特征维度整体偏低,如果只是使用低维的feature map效果并不会好。如果卷积层都是使用低维的feature map来提取特征的话,那么就没有办法提取到整体的足够多的信息。如果想要提取全面的特征信息的话,我们就需要有高维的feature map来进行补充,从而达到平衡。

MobileNetV2的论文:《MobileNetV2: Inverted Residuals and Linear Bottlenecks》

MobileNetV3在整体上有两大创新

1.互补搜索技术组合:由资源受限的NAS执行模块级搜索;由NetAdapt执行局部搜索,对各个模块确定之后网络层的微调。

2.网络结构改进:进一步减少网络层数,并引入h-swish激活函数。

作者发现swish激活函数能够有效提高网络的精度。然而,swish的计算量太大了。作者提出h-swish(hard version of swish)如下所示:

这种非线性在保持精度的情况下带了了很多优势,首先ReLU6在众多软硬件框架中都可以实现,其次量化时避免了数值精度的损失,运行快。

MobileNetV3模型结构的优化:

MobileNetV3的论文:《Searching for MobileNetV3》

【九】ViT(Vision Transformer)模型的结构和特点?

ViT模型特点
1.ViT直接将标准的Transformer结构直接用于图像分类,其模型结构中不含CNN。
2.为了满足Transformer输入结构要求,输入端将整个图像拆分成小图像块,然后将这些小图像块的线性嵌入序列输入网络中。在最后的输出端,使用了Class Token形式进行分类预测。
3.Transformer比CNN结构少了一定的平移不变性和局部感知性,在数据量较少的情况下,效果可能不如CNN模型,但是在大规模数据集上预训练过后,再进行迁移学习,可以在特定任务上达到SOTA性能。

ViT的整体模型结构

其可以具体分成如下几个部分:

  1. 图像分块嵌入

  2. 多头注意力结构

  3. 多层感知机结构(MLP)

  4. 使用DropPath,Class Token,Positional Encoding等操作。

【十】EfficientNet系列模型的结构和特点?

Efficientnet系列模型是通过grid search从深度(depth)、宽度(width)、输入图片分辨率(resolution)三个角度共同调节搜索得来的模型。其从EfficientNet-B0到EfficientNet-L2版本,模型的精度越来越高,同样,参数量和对内存的需求也会随之变大。

深度模型的规模主要是由宽度、深度、分辨率这三个维度的缩放参数决定的。这三个维度并不是相互独立的,对于输入的图片分辨率更高的情况,需要有更深的网络来获得更大的感受视野。同样的,对于更高分辨率的图片,需要有更多的通道来获取更精确的特征

EfficientNet模型搜索逻辑

EfficientNet模型的内部是通过多个MBConv卷积模块实现的,每个MBConv卷积模块的具体结构如下图所示。其用实验证明Depthwise Separable卷积在大模型中依旧非常有效;Depthwise Separable卷积较于标准卷积有更好的特征提取表达能力

另外论文中使用了Drop_Connect方法来代替传统的Dropout方法来防止模型过拟合。DropConnect与Dropout不同的地方是在训练神经网络模型过程中,它不是对隐层节点的输出进行随机的丢弃,而是对隐层节点的输入进行随机的丢弃。

EfficientNet论文:《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》

说点题外话,隔着paper都能看到作者那窒息的调参过程。。。

【十一】面试常问的经典模型?

面试中经常会问一些关于模型方面的问题,这也是不太好量化定位的问题,因为模型繁杂多样,面试官问哪个都有可能,下面的逻辑图里我抛砖引玉列出了一些不管是在学术界还是工业界都是高价值的模型,供大家参考。

最好还是多用项目,竞赛,科研等工作润色简历,并在面试过程中将模型方面的问题引向这些工作中用到的熟悉模型里。

#秋招##实习##面经##面试八股文##面霸的自我修养#
全部评论
计算 NMS 代码中,最后的 `order = order[inds + 1]` 应该是 `order = order[inds + 1: ]` 吧?而且感觉这样写可能本身应该被滤掉但是 score 比较低的 bboxes 还是会参与之后的计算。
点赞
送花
回复
分享
发布于 2022-08-18 15:42 日本

相关推荐

4 8 评论
分享
牛客网
牛客企业服务