九、java-场景应用 -1

1. 场景应用

1.1 微信红包相关问题

参考答案

概况:2014年微信红包使用数据库硬抗整个流量,2015年使用cache抗流量。

微信的金额什么时候算?

微信红包的金额是拆的时候实时算出来,不是预先分配的,采用的是纯内存计算,不需要预算空间存储。采取实时计算金额的考虑,是因为实时效率很高,而预算需要占存储,预算空间效率低。

为什么明明抢到红包,点开后发现没有?

2014年的红包一点开就知道金额,分两次操作,先抢到金额,然后再转账。2015年的红包的拆和抢是分离的,需要点两次,因此会出现抢到红包了,但点开后告知红包已经被领完的状况。进入到第一个页面不代表抢到,只表示当时红包还有。

红包里的金额怎么算?为什么出现各个红包金额相差很大?

随机,额度在0.01和剩余平均值*2之间。

例如:发100块钱,总共10个红包,那么平均值是10块钱一个,那么发出来的红包的额度在0.01元~20元之间波动。当前面3个红包总共被领了40块钱时,剩下60块钱,总共7个红包,那么这7个红包的额度在:0.01~(60/7*2)=17.14之间。

注意:这里的算法是每被抢一个后,剩下的会再次执行上面的这样的算法。这样算下去,会超过最开始的全部金额,因此到了最后面如果不够这么算,那么会采取如下算法:保证剩余用户能拿到最低1分钱即可。如果前面的人手气不好,那么后面的余额越多,红包额度也就越多,因此实际概率一样的。

红包的设计

微信从财付通拉取金额数据过来,生成个数/红包类型/金额放到redis集群里,app端将红包ID的请求放入请求队列中,如果发现超过红包的个数,直接返回。根据红包的逻辑处理成功得到令牌请求,则由财付通进行一致性调用,通过像比特币一样,两边保存交易记录,交易后交给第三方服务审计,如果交易过程中出现不一致就强制回归。

红包如何计算被抢完?

cache会抵抗无效请求,将无效的请求过滤掉,实际进入到后台的量不大。cache记录红包个数,原子操作进行个数递减,到0表示被抢光。财付通按照20万笔每秒入账准备,但实际还不到8万每秒。

通如何保持8w每秒的写入?

多主sharding,水平扩展机器。

据容量多少?

一个红包只占一条记录,有效期只有几天,因此不需要太多空间。

查询红包分配,压力大不?

抢到红包的人数和红包都在一条cache记录上,没有太大的查询压力。

一个红包一个队列?

没有队列,一个红包一条数据,数据上有一个计数器字段。

有没有从数据上证明每个红包的概率是不是均等?

不是绝对均等,就是一个简单的拍脑袋算法。

拍脑袋算法,会不会出现两个最佳?

会出现金额一样的,但是手气最佳只有一个,先抢到的那个最佳。

每领一个红包就更新数据么?

每抢到一个红包,就cas更新剩余金额和红包个数。

红包如何入库入账?

数据库会累加已经领取的个数与金额,插入一条领取记录,入账则是后台异步操作。

入帐出错怎么办?比如红包个数没了,但余额还有?

最后会有一个take all操作,另外还有一个对账来保障。

1.2 秒杀系统相关问题

参考答案

秒杀应该考虑哪些问题?

  1. 超卖问题

    分析秒杀的业务场景,最重要的有一点就是超卖问题,假如备货只有100个,但是最终超卖了200,一般来讲秒杀系统的价格都比较低,如果超卖将严重影响公司的财产利益,因此首当其冲的就是解决商品的超卖问题。

  2. 高并发

    秒杀具有时间短、并发量大的特点,秒杀持续时间只有几分钟,而一般公司都为了制造轰动效应,会以极低的价格来吸引用户,因此参与抢购的用户会非常的多。短时间内会有大量请求涌进来,后端如何防止并发过高造成缓存击穿或者失效,击垮数据库都是需要考虑的问题。

  3. 接口防刷

    现在的秒杀大多都会出来针对秒杀对应的软件,这类软件会模拟不断向后台服务器发起请求,一秒几百次都是很常见的,如何防止这类软件的重复无效请求,防止不断发起的请求也是需要我们针对性考虑的。

  4. 秒杀URL

    对于普通用户来讲,看到的只是一个比较简单的秒杀页面,在未达到规定时间,秒杀按钮是灰色的,一旦到达规定时间,灰色按钮变成可点击状态。这部分是针对小白用户的,如果是稍微有点电脑功底的用户,会通过F12看浏览器的network看到秒杀的url,通过特定软件去请求也可以实现秒杀。或者提前知道秒杀url的人,一请求就直接实现秒杀了。这个问题我们需要考虑解决。

  5. 数据库设计

    秒杀有把我们服务器击垮的风险,如果让它与我们的其他业务使用在同一个数据库中,耦合在一起,就很有可能牵连和影响其他的业务。如何防止这类问题发生,就算秒杀发生了宕机、服务器卡死问题,也应该让他尽量不影响线上正常进行的业务。

秒杀系统的设计方案

  1. 秒杀系统的数据库设计

    针对秒杀的数据库问题,应该单独设计一个秒杀数据库,防止因为秒杀活动的高并发访问拖垮整个网站。这里只需要两张表,一张是秒杀订单表,一张是秒杀货品表:

    其实应该还有几张表,商品表:可以关联goods_id查到具体的商品信息,商品图像、名称、平时价格、秒杀价格等,还有用户表:根据用户user_id可以查询到用户昵称、用户手机号,收货地址等其他额外信息,这个具体就不给出实例了。

  2. 秒杀URL的设计

    为了避免有程序访问经验的人通过下单页面url直接访问后台接口来秒杀货品,我们需要将秒杀的url实现动态化,即使是开发整个系统的人都无法在秒杀开始前知道秒杀的url。具体的做法就是通过md5加密一串随机字符作为秒杀的url,然后前端访问后台获取具体的url,后台校验通过之后才可以继续秒杀。

  3. 秒杀页面静态化

    将商品的描述、参数、成交记录、图像、评价等全部写入到一个静态页面,用户请求不需要通过访问后端服务器,不需要经过数据库,直接在前台客户端生成,这样可以最大可能的减少服务器的压力。具体的方法可以使用freemarker模板技术,建立网页模板,填充数据,然后渲染网页。

  4. 单体redis升级为集群redis

    秒杀是一个读多写少的场景,使用redis做缓存再合适不过。不过考虑到缓存击穿问题,我们应该构建redis集群,或采用哨兵模式,可以提升redis的性能和可用性。

  5. 使用nginx

    nginx是一个高性能web服务器,它的并发能力可以达到几万,而tomcat只有几百。通过nginx映射客户端请求,再分发到后台tomcat服务器集群中可以大大提升并发能力。

  6. 精简SQL

    典型的一个场景是在进行扣减库存的时候,传统的做法是先查询库存,再去update。这样的话需要两个sql,而实际上一个sql我们就可以完成的。可以用这样的做法:update miaosha_goods set stock=stock-1 where goos_id={#goods_id} and version=#{version} and sock>0; 。这样的话,就可以保证库存不会超卖并且一次更新库存,还有注意一点这里使用了版本号的乐观锁,相比较悲观锁,它的性能较好。

  7. redis预减库存

    很多请求进来,都需要后台查询库存,这是一个频繁读的场景。可以使用redis来预减库存,在秒杀开始前可以在redis设值,比如 redis.set(goodsId,100),这里预放的库存为100可以设值为常量),每次下单成功之后,Integer stock = (Integer)redis.get(goosId); 然后判断sock的值,如果小于常量值就减去1。不过注意当取消的时候,需要增加库存,增加库存的时候也得注意不能大于之间设定的总库存数(查询库存和扣减库存需要原子操作,此时可以借助lua脚本)下次下单再获取库存的时候,直接从redis里面查就可以了。

  8. 接口限流

    秒杀最终的本质是数据库的更新,但是有很多大量无效的请求,我们最终要做的就是如何把这些无效的请求过滤掉,防止渗透到数据库。限流的话,需要入手的方面很多:

    • 前端限流:首先第一步就是通过前端限流,用户在秒杀按钮点击以后发起请求,那么在接下来的5秒是无法点击(通过设置按钮为disable)。这一小举措开发起来成本很小,但是很有效。
    • 同一个用户x秒内重复请求直接拒绝:具体多少秒需要根据实际业务和秒杀的人数而定,一般限定为10秒。具体的做法就是通过redis的键过期策略,首先对每个请求都从String value = redis.get(userId);。如果获取到这个value为空或者为null,表示它是有效的请求,然后放行这个请求。如果不为空表示它是重复性请求,直接丢掉这个请求。如果有效,采用redis.setexpire(userId,value,10).value 可以是任意值,一般放业务属性比较好,这个是设置以userId为key,10秒的过期时间(10秒后,key对应的值自动为null)。
    • 令牌桶算法限流:接口限流的策略有很多,我们这里采用令牌桶算法。令牌桶算法的基本思路是每个请求尝试获取一个令牌,后端只处理持有令牌的请求,生产令牌的速度和效率我们都可以自己限定。
  9. 异步下单

    为了提升下单的效率,并且防止下单服务的失败。需要将下单这一操作进行异步处理。最常采用的办法是使用队列,队列最显著的三个优点:异步、削峰、解耦。这里可以采用rabbitmq,在后台经过了限流、库存校验之后,流入到这一步骤的就是有效请求。然后发送到队列里,队列接受消息,异步下单。下完单,入库没有问题可以用短信通知用户秒杀成功。假如失败的话,可以采用补偿机制,重试。

  10. 服务降级

    假如在秒杀过程中出现了某个服务器宕机,或者服务不可用,应该做好后备工作。之前的博客里有介绍通过Hystrix进行服务熔断和降级,可以开发一个备用服务,假如服务器真的宕机了,直接给用户一个友好的提示返回,而不是直接卡死,服务器错误等生硬的反馈。

全部评论

相关推荐

牛客33727151号:不是哥们我以为驾照是段子呢
点赞 评论 收藏
分享
03-31 17:40
已编辑
门头沟学院 算法工程师
程序员牛肉:小牛肉来也! 也不要焦虑啦,你第一志愿还没有结束,只是回到人才库(泡大池子等待各个部门挑选)而已。仅仅代表你不符合这个组的用人标准,并不能够说明你在本次暑期实习中没机会加入美团了。 还是平复好心态,不断的复盘,等待下一次面试就好了。
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客企业服务