【SQL】Hive和关系型数据库的区别

来源:https://zhuanlan.zhihu.com/p/137458844

一、HIVE和关系型数据库的区别

(1)查询语言
hive采用了类SQL查询语言,这是唯一一点和关系型数据库类似的。

(2)数据存储位置
hive是建立在hadoop之上的,因此数据都存储在HDFS中。
数据库则可以将数据存储在块设备或本地文件系统中。

(3)数据格式
hive中数据格式可以由用户指定。
hive在加载的过程中不会对用户定义的数据格式进行hive定义的格式转化,只是简单地复制或移动到相应的HDFS目录当中。
在数据库中有自身的数据格式定义,所有数据按一定的组织形式存放,因此数据库加载时比较慢。

(4)数据更新
由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。
Hive中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。
而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO … VALUES 添加数据,使用 UPDATE … SET修改数据。

(5)索引
之前已经说过,Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。
Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。
由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。
数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。
由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。

(6)执行
Hive中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的(类似 select * from tbl的查询不需要MapReduce)。
而数据库通常有自己的执行引擎。

(7)执行延迟
之前提到,Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。
另外一个导致 Hive 执行延迟高的因素是 MapReduce框架。由于MapReduce 本身具有较高的延迟,因此在利用MapReduce 执行Hive查询时,也会有较高的延迟。
相对的,数据库的执行延迟较低。
当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时 候,Hive的并行计算显然能体现出优势。

(8)可扩展性
由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的(世界上最大的Hadoop 集群在 Yahoo!,2009年的规模在4000 台节点左右)。
而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有100台左右。

(9)数据规模
由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据。
对应的,数据库可以支持的数据规模较小。

二、什么是HDFS(分布式储存系统)?

图片说明

(1)HDFS是干嘛的?
图片说明

(2)HDFS处理文件的思路
图片说明
图片说明

(3)HDFS架构
图片说明

(4)HDFS读取过程
图片说明

(5)HDFS写入过程
图片说明

三、什么是MapReduce(数据处理)?

待完善

四、什么是YARN(集群资源管理)?

待完善

全部评论

相关推荐

开发转测第二人:没实习的话,两个项目吧,八股也要准备一下,这个时间点有点小晚了
点赞 评论 收藏
分享
老粉都知道小猪猪我很久没更新了,因为秋招非常非常不顺利,emo了三个月了,接下来说一下我的情况吧本人是双非本 专业是完全不着计算机边的非科班,比较有优势的是有两段大厂实习,美团和字节。秋招面了50+场泡池子泡死的:滴滴 快手 去哪儿 小鹏汽车 不知名的一两个小厂其中字节13场 两次3面挂 两次2面挂 一次一面挂其中有2场面试题没写出来,其他的都是全a,但该挂还是挂,第三次三面才面进去字节,秋招加暑期总共面了22次字节,在字节的面评可以出成书了快手面了8场,2次实习的,通过了但没去,一次2面挂 最后一次到录用评估 至今无消息滴滴三面完 没几天挂了 所有技术面找不出2个问题是我回答不上来的,三面还来说我去过字节,应该不会考虑滴滴吧,直接给我干傻了去哪儿一天速通 至今无消息小鹏汽车hr 至今无消息美团2面挂 然后不捞我了,三个志愿全部结束,估计被卡学历了虾皮二面挂 这个是我菜,面试官太牛逼了拼多多二面挂 3道题也全写了 也没问题是回答不出来的 泡一周后挂腾讯面了5次 一次2面挂 三次一面挂,我宣布腾讯是世界上最难进的互联网公司然后还有一些零零散散的中小厂,但是数量比较少,约面大多数都是大厂。整体的战况非常惨烈,面试机会少,就算面过了也需要和各路神仙横向对比,很多次我都是那个被比下去的人,不过这也正常,毕竟谁会放着一个985的硕士不招,反而去招一个双非读化学的小子感觉现在互联网对学历的要求越来越高了,不仅仅要985还要硕士了,双非几乎没啥生存空间了,我感觉未来几年双非想要进大厂开发的难度应该直线上升了,唯一的打法还是从大二刷实习,然后苟个转正,不然要是去秋招大概率是炮灰。而且就我面字节这么多次,已经开始问很多ai的东西了,你一破本科生要是没实习没科研懂什么ai啊,纯纯白给了
不知名牛友_:爸爸
秋招你被哪家公司挂了?
点赞 评论 收藏
分享
评论
点赞
1
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务