【每日一题】8月4日—购物,动态规划,贪心
购物
https://ac.nowcoder.com/acm/problem/14526
题目意思:
Solution
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define mk(__x__,__y__) make_pair(__x__,__y__) #define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__)) typedef long long ll; typedef unsigned long long ull; typedef long double ld; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int MOD = 1e9 + 7; const int INF = 0x3f3f3f3f; const int N = 300 + 7; ll a[N][N]; ll dp[N][N]; int main() { int n = read(), m = read(); for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) a[i][j] = read(); for (int i = 1; i <= n; ++i) sort(a[i] + 1, a[i] + 1 + m); for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) a[i][j] += a[i][j - 1]; ms(dp, 0x3f); dp[0][0] = 0; for (int i = 1; i <= n; ++i) for (int j = i; j <= min(n, i * m); ++j) for (int k = i - 1; k <= min(n, min(j, (i - 1) * m)); ++k) dp[i][j] = min(dp[i][j], dp[i - 1][k] + a[i][j - k] + (j - k) * (j - k)); print(dp[n][n]); return 0; }
每日一题 文章被收录于专栏
每日一题