HDU【5919】Sequence II(主席树)
题意
给出n(n ≤ 2e5)个数,m(m ≤ 2e5)个询问,每个数的大小(0 < ai ≤ 2e5)。对于每个询问输入l,r,表示al ... ar这个区间得到的每个数第一次出现的位置下标的排列,假设这个区间有k个不同的数,得到的排列是p1 < p2 < p3 < ... < pk,求第(k + 1) / 2个数是多少?
题解
对于给出的数列,我们可以从后往前依次插入主席树(如果该数字之前出现过,则在之前下标处减1),这样我们可以用O(logn)的时间复杂度在第l棵线段树上求出给定l到r区间有多少个不同的数字(假设有k个),然后再用O(logn)的时间复杂度在第l棵线段树上求第(k + 1) / 2小的数就好了,总时间复杂度O(nlogn)。
代码
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 5; struct node{ int ls, rs, val; }tree[maxn * 40]; int arr[maxn], rot[maxn], pos[maxn], ans[maxn]; int tot, t, n, m; inline int read(){ int s = 0, w = 1; char ch = getchar(); while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar();} while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar(); return s * w; } inline void print(int x){ if(x < 0) x = ~x + 1, putchar('-'); if(x > 9) print(x / 10); putchar(x % 10 + '0'); } inline void init(){ tot = 0; memset(pos, 0, sizeof(pos)); } int Build(int l, int r){ int root = ++tot; if(l == r) return root; int mid = (l + r) >> 1; tree[root].ls = Build(l, mid); tree[root].rs = Build(mid + 1, r); return root; } int UpDate(int root, int l, int r, int vis, int val){ int o = ++tot; tree[o].ls = tree[root].ls; tree[o].rs = tree[root].rs; tree[o].val = tree[root].val + val; if(l == r) return o; int mid = (l + r) >> 1; if(vis <= mid) tree[o].ls = UpDate(tree[o].ls, l, mid, vis, val); else tree[o].rs = UpDate(tree[o].rs, mid + 1, r, vis, val); return o; } int Query(int root, int l, int r, int x, int y){ if(l >= x && r <= y) return tree[root].val; int mid = (l + r) >> 1; if(y <= mid) return Query(tree[root].ls, l, mid, x, y); else if(x > mid) return Query(tree[root].rs, mid + 1, r, x, y); else return Query(tree[root].ls, l, mid, x, mid) + Query(tree[root].rs, mid + 1, r, mid + 1, y); } int Find(int root, int l, int r, int k){ if(l == r) return l; int mid = (l + r) >> 1; int res = tree[tree[root].ls].val; if(res >= k) return Find(tree[root].ls, l, mid, k); else return Find(tree[root].rs, mid + 1, r, k - res); } int main(){ t = read(); for(int tt = 1; tt <= t; tt++){ init(); n = read(), m = read(); rot[n + 1] = Build(1, n); for(int i = 1; i <= n; i++) arr[i] = read(); for(int i = n; i >= 1; i--){ if(pos[arr[i]]){ rot[i] = UpDate(rot[i + 1], 1, n, pos[arr[i]], -1); rot[i] = UpDate(rot[i], 1, n, i, 1); } else{ rot[i] = UpDate(rot[i + 1], 1, n, i, 1); } pos[arr[i]] = i; } for(int ca = 1; ca <= m; ca++){ int l, r; l = read(), r = read(); l = (l + ans[ca - 1]) % n + 1; r = (r + ans[ca - 1]) % n + 1; if(l > r) swap(l, r); int k = (Query(rot[l], 1, n, l, r) + 1) / 2; ans[ca] = Find(rot[l], 1, n, k); } printf("Case #%d:", tt); for(int i = 1; i <= m; i++) putchar(' '), print(ans[i]); putchar('\n'); } return 0; }