W - Blocks(POJ3734 矩阵快速幂)

W - Blocks

Panda has received an assignment of painting a line of blocks. Since Panda is such an intelligent boy, he starts to think of a math problem of painting. Suppose there are N blocks in a line and each block can be paint red, blue, green or yellow. For some myterious reasons, Panda want both the number of red blocks and green blocks to be even numbers. Under such conditions, Panda wants to know the number of different ways to paint these blocks.

Input

The first line of the input contains an integer T(1≤T≤100), the number of test cases. Each of the next T lines contains an integer N(1≤N≤10^9) indicating the number of blocks.

Output

For each test cases, output the number of ways to paint the blocks in a single line. Since the answer may be quite large, you have to module it by 10007.

Sample Input

2
1
2

Sample Output

2
6

题意:

有n个盒子排成一列,现在要你给盒子染色,有红,蓝,绿,黄四种颜色,其中红色和绿色染色的必须为偶数个,其余随意,问你有几种方法。

分析:

令a(n)为n个盒子,其中红色和绿色为分别为偶数个的方法

令b(n)为n个盒子,其中红色为奇数和,绿色为偶数个的方法

令c(n)为n个盒子,其中红色和绿色都为奇数个的方法

所以有下列方程成立

a ( n ) = 2 a ( n 1 ) + 2 b ( n 1 ) a(n)=2*a(n-1)+2*b(n-1) a(n)=2a(n1)+2b(n1)

b ( n ) = a ( n 1 ) + 2 b ( n 1 ) + c ( n 1 ) b(n)=a(n-1)+2*b(n-1)+c(n-1) b(n)=a(n1)+2b(n1)+c(n1)

c ( n ) = 2 b ( n 1 ) + 2 c ( n 1 ) c(n)=2*b(n-1)+2*c(n-1) c(n)=2b(n1)+2c(n1)

为了加速该递推式,构建矩阵快速幂即可
[ <mstyle displaystyle="false" scriptlevel="0"> a ( n ) </mstyle> <mstyle displaystyle="false" scriptlevel="0"> b ( n ) </mstyle> <mstyle displaystyle="false" scriptlevel="0"> c ( n ) </mstyle> ] = [ <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 0 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 0 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> ] [ <mstyle displaystyle="false" scriptlevel="0"> a ( n 1 ) </mstyle> <mstyle displaystyle="false" scriptlevel="0"> b ( n 1 ) </mstyle> <mstyle displaystyle="false" scriptlevel="0"> c ( n 1 ) </mstyle> ] \left[ \begin{matrix} a(n)\\ b(n)\\ c(n) \\ \end{matrix} \right]= \left[ \begin{matrix} 2&amp;2&amp;0\\ 1&amp;2&amp;1\\ 0&amp;2&amp;2 \\ \end{matrix} \right] * \left[ \begin{matrix} a(n-1)\\ b(n-1)\\ c(n-1) \\ \end{matrix} \right] a(n)b(n)c(n)=210222012a(n1)b(n1)c(n1)

#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<iostream>
#include<iomanip>
#include<stack>
#include<vector>
#define mset(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int maxn=3;
const int branch=26;
const int inf=0x3f3f3f3f;
const int MOD=10007;
struct Matrix
{
    int m[maxn][maxn];
    Matrix operator = (const Matrix& b)
    {
        for(int i=0; i<maxn; ++i)
            for(int j=0; j<maxn; ++j)
                m[i][j]=b.m[i][j];
        return *this;
    }
    void Print() const
    {
        for(int i=0; i<maxn; ++i)
        {
            for(int j=0; j<maxn; ++j)
            {
                printf("%d ",m[i][j]);
            }
            printf("\n");
        }
        printf("\n");
    }
};
Matrix operator *(const Matrix& a,const Matrix& b)
{
    Matrix ans;
// a.Print();
// b.Print();
        for(int i=0; i<maxn; ++i)
            for(int j=0; j<maxn; ++j)
            {
                ans.m[i][j]=0;
                for(int k=0; k<maxn; ++k)
                    ans.m[i][j]=(ans.m[i][j]+a.m[i][k]*b.m[k][j])%MOD;
            }
// ans.Print();
    return ans;
}
Matrix quick_pow(Matrix a,int b)
{
    Matrix ans;
    mset(ans.m,0);
    for(int i=0; i<maxn; ++i)
        ans.m[i][i]=1;
    while(b)
    {
        if(b&1)
            ans=ans*a;
        b/=2;
        a=a*a;
    }
    return ans;
}
int solve(int n)
{
    Matrix ans;
    ans.m[0][0]=2,ans.m[0][1]=2,ans.m[0][2]=0;
    ans.m[1][0]=1,ans.m[1][1]=2,ans.m[1][2]=1;
    ans.m[2][0]=0,ans.m[2][1]=2,ans.m[2][2]=2;
    ans=quick_pow(ans,n-1);
    return (ans.m[0][0]*2+ans.m[0][1])%MOD;
}
int main()
{
    int n,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        printf("%d\n",solve(n));
    }
    return 0;
}
全部评论

相关推荐

不愿透露姓名的神秘牛友
10-04 05:12
kalistar:简历留六个字,北京大学(本科),黑体加粗,看看哪个hr不长眼敢碰瓷我们北大✌
点赞 评论 收藏
分享
10-21 00:37
已编辑
门头沟学院 C++
小浪_Coding:你问别人,本来就是有求于人,别人肯定没有义务免费回答你丫, 有点流量每天私信可能都十几,几十条的,大家都有工作和自己的事情, 付费也是正常的, 就像你请别人搭把手, 总得给人家买瓶水喝吧
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务