HDU 1695 GCD

GCD

Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Problem Description

Given 5 integers: a, b, c, d, k, you’re to find x in a…b, y in c…d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you’re only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

Input

The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.

Output

For each test case, print the number of choices. Use the format in the example.

Sample Input

2
1 3 1 5 1
1 11014 1 14409 9

Sample Output

Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

题意:

在1<= x <= b && 1 <= y <= d中,有多少个gcd(x, y)。

思路:

莫比乌斯的模板题,需要注意的是最后要减去重复的数。

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 100010;
ll modn[maxn], prime[maxn];
bool book[maxn] = {false};
void GetModn() {
    int cnt = 0;
    modn[1] = 1;
    for (int i = 2; i < maxn; i++) {
        if (!book[i]) {
            modn[i] = -1;
            prime[cnt++] = i;
        }
        for (int j = 0; j < cnt && prime[j] * i < maxn; j++) {
            int x = prime[j];
            book[i * x] = true;
            if (i % x == 0) {
                modn[i * x] = 0;
                break;
            } else modn[i * x] = -modn[i];
        }
    }
}
int main() {
    ios::sync_with_stdio(false);
    GetModn();
    int t;
    scanf("%d", &t);
    for (int Case = 1; Case <= t; Case++) {
        ll a, b, c, d, k;
        scanf("%lld %lld %lld %lld %lld", &a, &b, &c, &d, &k);
        printf("Case %d: ", Case);
        if (k == 0) {
            printf("0\n");
            continue;
        }
        b /= k;
        d /= k;
        ll ans1 = 0, ans2 = 0;
        for (int i = 1; i <= min(b, d); i++) ans1 += modn[i] *  (b / i) * (d / i);
        for (int i = 1; i <= min(b, d); i++) ans2 += modn[i] * (min(b, d) / i) * (min(b, d) / i);
        ans1 -= ans2 / 2;
        printf("%lld\n", ans1);
    }
    return 0;
}

全部评论

相关推荐

09-19 13:59
门头沟学院 Java
用微笑面对困难:Trae一下,如果真成了,他用了直接发字节起诉代码版权,,这个代码不商用是没问题的如果没成也是情理之中的。
点赞 评论 收藏
分享
迷茫的大四🐶:💐孝子启动失败,改为启动咏鹅
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务