首页
题库
公司真题
专项练习
面试题库
在线编程
面试
面试经验
AI 模拟面试
简历
求职
学习
基础学习课
实战项目课
求职辅导课
专栏&文章
竞赛
我要招人
发布职位
发布职位、邀约牛人
更多企业解决方案
AI面试、笔试、校招、雇品
HR免费试用AI面试
最新面试提效必备
登录
/
注册
牛客176041020号
06-24 22:19
已编辑
电子科技大学 Java
发布于四川
关注
已关注
取消关注
京东or滴滴
投票
25届校招offer:
京东零售:n*19,base北京
滴滴国际化增长:(n-2)* 15,base北京
#offer#
全部评论
推荐
最新
楼层
暂无评论,快来抢首评~
相关推荐
昨天 13:19
已编辑
门头沟学院 Java
25应届实习试用期被裁
本人25应届实习生 4月底入职 离拿毕业证1 2天时间突然被裁 现在不知道怎么办了 求求各位大佬指导一下接下来怎么做 我是双非本 计算机专业的
应届生应该先就业还是先择业
应届生进小公司有什么影响吗
点赞
评论
收藏
分享
不愿透露姓名的神秘牛友
昨天 21:00
入职BYD半年
各种条条框框、绩效考核,绩效越打越低,实在受不了,打算辞职,听说不能二进宫,这份工作的好处是双休加班少,但是我真的不想再当一个部门边缘废物了,项目是啥都没有的,每天就在写报告搞培训,明明是个学工科的,结果完全是个高中生都能做的工作,后悔还是因为脱离舒适区加上目前还没找到加班不多且双休的工作吧,但是如果我不离职我的心就会一直不安,外面的兄弟说说外面的世界是什么样子的。
投递比亚迪等公司9个岗位 >
聊聊这家公司值得去吗
点赞
评论
收藏
分享
昨天 01:02
广东药科大学 golang
AI应用面试题
1. 什么是MCP参考面试回答:MCP模型上下文协议)是为大型语言模型提供的一个统一标准化接口、让AI能够无缝连接各种外部数据源和工具。可以将它比作AI世界的USB接口—只要遵循这个协议标准、任何数据源或工具都能与语言模型实现即插即用比如说传统的AI只能依赖预训练的静态知识、无法获取实时数据。而通过MCP,模型可以动态访问最新信息、比如查询搜索引擎、读取本地文件、调用第三方API、甚至直接操作各种工具库。比如说可以访问Github、IDEA这个协议最大的价值是标准化、它是MCP的核心价值 - 你不需要为每个AI模型和每个工具之间的连接编写专门的代码、只要双方都支持MCP协议、它们就能自动"对话"。这大大简化了系统集成、降低了开发成本、也提高了系统的可扩展性总结就是 MCP 创建一个通用标准、使 AI 应用程序的开发和集成变得更加简单和统一2. 大模型输出出现重复和幻觉如何解决参考面试回答:在大模型生成内容时、出现重复和幻觉是两个常见的问题。重复指的是模型在生成文本时出现内容重复的现象、而幻觉则是指模型生成了看似合理但实际上不真实或不准确的信息。为了解决这两个问题、可以通过微调(fine-tuning)的方法进行优化为了解决这些问题、首先微调是非常有效的手段。首先可以确保用于训练的数据质量、要高质量的真实的信息。我们可以减少模型学到错误的信息。特别是领域特定的微调、能帮助模型更准确地生成内容,避免在特定领域(比如医疗、金融)中产生幻觉。此外在训练过程中引入惩罚机制、比如对模型生成重复或不准确内容进行惩罚、也能够引导模型生成更为多样和真实的内容。另一个有效的策略是使用参数高效微调(PEFT)、通过像LoRA这样的技术、在不改变模型主体结构的情况下调整部分参数、从而提高微调效率并减少幻觉的产生。同时强化学习与人类反馈(RLHF)也是一种非常有用的方法、结合人类的评价、模型可以在生成内容时更符合实际世界的逻辑,降低幻觉的风险。最后检索增强生成(RAG)技术也能够显著提高模型输出的准确性、通过在生成过程中引入外部知识库、确保模型生成的信息更为真实和可靠。总的来说:通过微调、引入惩罚机制、领域特定训练和强化学习等方法、可以有效减少大模型的重复和幻觉问题3. 什么是RAG?流程是什么?面试参考回答:RAG就是结合信息检索和生成式模型的技术。主要流程包括两个核心环节:检索:基于用户的输入、从外部知识库(如数据库、文档、网页)检索与问题相关的信息。通常使用向量化表示和向量数据库进行语义匹配。将知识库中的文档进行预处理、分块、清洗并转换为向量表示、存储在向量数据库中。常用的如 Faiss、Milvus等向量数据库存储所有文档向量。用户提问后、对问题进行向量化、并在数据库中执行最近邻搜索、找出语义最相近的 N 条内容然后就是增强:也可以说是构建 Prompt1.将检索到的信息作为上下文、输入给生成模型(如 GPT)。2.相比纯生成模型、RAG 能引用真实数据、减少幻觉(胡编乱造)最后就是由将增强后的上下文输入到大型语言模型、综合已有上下文生成最终生成最终的回答或内容。一句话总结: RAG = 向量搜索引擎 + 大模型、让 AI 回答更靠谱、减少幻觉4. RAG的详细完整的工作流程参考面试回答流程:RAG(检索增强生成)的完整流程可分为5个核心阶段:1. 用户提问2. 数据准备:清洗文档、分块处理(如PDF转文本切片)2. 向量化:使用嵌入模型(如BERT、BGE)将文本转为向量。也就是Embedding 向量化3. 索引存储:向量存入数据库(如Milvus、Faiss、Elasticsearch)。4. 检索增强:用户提问向量化后检索相关文档。也就是构建 Prompt (问题 + 检索内容)5. 生成答案:将检索结果与问题组合输入大模型生成回答。5. 在 RAG 中的 Embedding 嵌入是什么参考面试回答: Embedding是RAG系统的核心组件、Embedding(嵌入)技术本质上是将文本、图像等非结构化数据转换为高维向量的过程。在实际应用中Embedding解决了传统关键词检索的局限性。比如用户询问如何煮奶茶时、传统检索可能无法找到包含'奶茶制作步骤'的文档、因为它们字面上不匹配。而通过Embedding、系统能够理解这两个表达在语义上的相似性、从而返回相关内容。Embedding的工作原理是通过深度学习模型(如BERT、Sentence-Transformers等)将文本映射到768维或更高的向量空间。在RAG系统中、Embedding的核心价值在于建立查询和文档之间的语义桥梁。当系统收到用户问题后、会将其转化为向量、然后在预先索引的文档向量库中寻找最相似的内容、无论它们在字面表达上是否匹配。这种基于语义的检索方式大幅提升了信息获取的准确性和完整性、为生成模型提供了更高质量的上下文信息,从而产生更精准的回答6. 什么是LangChain参考面试回答:LangChain 是一个开源框架、专为快速构建复杂的大语言模型应用而设计。简单来说就是它集成和内置了很多我们开发 AI 大模型应用需要的东西、如内置文档加载器、向量数据库、HTTP API 封装、云服务适配器等、让咱们开箱即用、有点像咱们 Java 届的 Spring。它最大的特点是把模型调用、提示词管理、工具使用、记忆管理这些能力模块化了、让开发者可以很方便地把大模型和数据库、搜索引擎、API服务等结合起来,用链式结构组织复杂任务。主要支持复杂任务编排:通过 Chains(链)和 Agents(代理)将多个LLM调用和工具操作组合成工作流以及实现上下文管理Memory(记忆):通过 Memory 组件(如对话历史缓存、实体关系跟踪)实现长对话连贯性。6. 什么是向量数据库参考面试回答:我的理解是:向量数据库它可以将非结构化数据(如文本、图片、音频等)转换成高维向量的形式进行存储、通过向量数据库预先存储结构化段、实时检索最相关的 Top-K 内容作为上下文输入、并通过高效的相似性搜索算法、快速找到与目标向量最接近的数据项。传统数据库采用存储数据、主要用于精确匹配查询、常用的检索方式就是精确匹配、索引结构有像B+树或者倒排索引的结构。而向量数据库针对高维向量数据优化、支持近似最近邻(ANN)搜索算法、更适合语义相似性搜索。可以理解为TopN系列、检索TopK相关内容作为上下文输入。向量数据库预先向量化并建立索引(如 HNSW、IVF),实现亚秒级检索。代表性的向量数据库就是Milvus:一个开源的向量数据库系统8. 向量数据库的核心原理是什么?核心技术是什么参考面试回答:向量数据库的核心原理是通过将高维数据(如图像、文本)转换为多维向量、并基于相似性度量(如余弦相似度、欧氏距离),利用高效的索引结构和近似最近邻(ANN)算法、快速检索与目标最相似的向量结果。这一过程可概括为三个关键步骤:首先是向量化:我们通过嵌入模型将非结构化数据映射为稠密向量、比如用BERT处理文本、ResNet处理图像、或CLIP处理多模态数据。这些模型能捕获数据的语义或特征信息、通常生成128到2048维的向量其次是索引构建:为了高效检索、我们会采用分层导航小世界图(HNSW)等结构预处理向量。HNSW能将搜索复杂度降至对数级O(log N)。同时我们还会利用乘积量化(PQ)来压缩向量、减少内存占用、以及通过倒排索引(IVF)缩小搜索范围。最后是近似搜索:在实际应用中我们允许一定误差来提升速度。ANN算法会在准确性和效率间寻找平衡点、确保在毫秒级延迟内返回Top-K相似结果、同时保持95%以上的召回率。总的来说就四个核心层:向量化引擎->索引结构 ->相似度计算->搜索原始数据 → 向量化 → 索引构建(HNSW/PQ/LSH) → 输入查询向量 → ANN近似搜索 → 返回Top-K结果(格式明天再改吧___发帖于2025.6.25 00:47)
everll:
更多见《牛客面经八股》https://www.nowcoder.com/exam/interview
点赞
评论
收藏
分享
昨天 21:30
中南大学 Java
西二旗的有福了
西二旗的互联网单身汉有福了!刚刚,刷到了开封干娘的视频,说她要来北京西二旗搞线下相亲局,“互联网公司的单身汉、姑娘们,都给我把工牌挂上红线!” 开封干娘可是相亲界顶流,是大火的王婆说媒的主持人,战绩可查:曾在全国媒婆大赛总决赛中获得一等奖,凭借1年促成四五十对有情人的战绩开启全国巡演。 听快手员工说这次活动是快手请来的,是公司给员工的一项福利。活动时间是6月28日(本周六)下午4点到6点,活动地点在快手的元中心,线下活动需要报名,报名成功后会给发短信,凭短信入场,还可以报名上台互动。 注意!本次活动,虽然是快手主办的,但快手直接组了个局,邻居百度、小米等互联网公司的员工都可以报名参加。这是什么...
投递快手等公司9个岗位 >
牛客创作赏金赛
点赞
评论
收藏
分享
06-24 23:38
已编辑
美团_前端(实习员工)
美团,阿里业务调整,美团优选倒闭!
今天才收到消息,美团优选被砍掉了,业务已经停了,其他人员并到小象和快驴,不过估计有一部分会选择拿n+1跑路了(不过优选是真垃圾)。在消息出来一个小时前,饿了么和飞猪合到淘天下面,淘天业务变得更加臃肿,我感觉估计还是要动刀,本来阿里的1+6+n把阿里业务拆分了,淘天又把零售和到家吃掉。。。所以现在就是三家军备竞赛,全在抢即时零售的市场份额,输的一方肯定又要动刀,程序员只不过是商战的炮灰罢了
野猪不是猪🐗:
woc,优选的人调进闪购,直接变人↑人了
京东美团大战,你怎么看?
商战,最累的是我们
点赞
评论
收藏
分享
一键发评
京东base北京
接好运
举报了
滴滴base北京
n*19是多少
评论
点赞成功,聊一聊 >
点赞
收藏
分享
评论
提到的真题
返回内容
招聘动态
查看更多
现代汽车前瞻技术研发挑战赛
26届投递链接合集
快手
全站热榜
更多
1
...
秋招就投这些了
2.8W
2
...
AI应用面试题
2.1W
3
...
不懂“心眼子”会吃大亏!测测你的心眼子能拿几分?
1.3W
4
...
26届各互联网厂开启秋招时间线汇总
5907
5
...
暑期实习后发现自己不适合大厂
5400
6
...
最emo的一天
5142
7
...
女友爸爸帮我花钱找了工作,我爸妈觉得应该的
4357
8
...
牛客算法岗 - CV 实习分享
4278
9
...
莉莉丝游戏测试HR面
4227
10
...
刚实习就碰上巨婴姐了
4094
创作者周榜
更多
正在热议
更多
#
第一份工作能做外包吗?
#
13978次浏览
178人参与
#
你秋招想去哪些公司
#
3394次浏览
181人参与
#
为了找工作你花了哪些钱?
#
13015次浏览
124人参与
#
26届校招投递进展
#
1627次浏览
38人参与
#
职场捅娄子大赛
#
400439次浏览
4004人参与
#
选完offer后,你后悔学机械吗?
#
30194次浏览
167人参与
#
你都遇到过哪些离谱的求职经历
#
9266次浏览
29人参与
#
你见过最离谱的招聘要求是什么?
#
194722次浏览
1452人参与
#
大学四年该怎么过,才不算浪费时间?
#
5982次浏览
58人参与
#
如何看待应届生身份?
#
118841次浏览
1160人参与
#
应届生进小公司有什么影响吗
#
74237次浏览
1017人参与
#
如果不考虑收入,你最想做什么工作?
#
22130次浏览
134人参与
#
你今年的平均薪资是多少?
#
128431次浏览
665人参与
#
应届生应该先就业还是先择业
#
110023次浏览
643人参与
#
商战,最累的是我们
#
17764次浏览
78人参与
#
国企/银行/研究所公司爆料
#
138816次浏览
807人参与
#
还记得你第一次面试吗?
#
202029次浏览
2950人参与
#
金融财会交流会
#
109203次浏览
378人参与
#
计算机专业还有必要去大厂卷吗
#
25058次浏览
151人参与
#
制造业的秋招小结
#
90034次浏览
1622人参与
牛客网
牛客网在线编程
牛客网题解
牛客企业服务