秋招选择推荐算法还是偏算法一些的agent

感觉推荐算法跟开发一样 各种场景超多业务,但是增量真的有限,低的用DNN都能跑出收益,水位线高的都在卷生成式。我目前接触过一些ai搜,做一些意图识别、搜索算法也是需要训模型的,感觉是不是比纯粹的推荐算法靠谱一些呢
全部评论
ai搜感觉一般是更偏向大模型,能去bat核心组做这个还是挺好的吧, 我看一个北大佬就推荐过去做ai搜了
点赞 回复 分享
发布于 01-01 16:53 上海

相关推荐

1.你的 Agent 系统Prompt 是怎么设计和迭代的?有没有做过 Prompt 自动优化?当用户提出不完整的请求时,如何补全用户意图的?2.构建 Agent 的时候,遇到过哪些瓶颈?LangChain 的 memory 默认机制在多3.用户并发中怎么做隔离?你是如何保证线程安全的?4.微调 Llama2 你是怎么选择训练样本的?清洗逻辑是什么?你有没有观察到哪些训练样本质量问题对模型行为有很大影响?举例说明。5.DPO相比 SFT,有哪些优劣?它在 Agent 任务上效果提升明显吗?你怎么构造偏好对?构造逻辑是自动的还是人工?6.你说你服务部署在 vLLM 上,为何选择它?KV-cache 如何帮助推理加速?你自己做过哪些优化?7.假如需要支持 Streaming 输出,但当前服务延迟又超标,你会怎么折中设计?8.多轮对话上下文状态管理是如何做的?如何在高并发场景下保证一致性?9.你做的 Agent 使用了多少个外部工具,在调用链条上如何保障故障容错和超时机制?10.有没有做过工具调用失败后的feedback策略设计?11.训练过程中数据来自用户行为日志,你是如何从这些数据中抽取训练对话的?有没有做过归一化或事件抽象?12.有没有了解过带有时间窗口/偏移限制的对话系统?模型怎么“理解时间”?13.你觉得 Agent 哪些模块最容易在真实业务中出问题?你会如何监控和定位的?
点赞 评论 收藏
分享
评论
2
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务