美团日常实习-大模型算法应用

投完后直接约面了,也没有笔试也没有测评。
感觉纯纯kpi
都是围绕项目问,最后考虑个堆排序
面试官给了很多正反馈,问什么时候能入职,说很match
结果,面完后直接挂???
唉,难受啊,给了你很大期望,然后直接挂你
全部评论
这个太搞了 不过习惯就好了 一般面试官夸你的时候就该当心了
6 回复 分享
发布于 2024-04-03 12:34 黑龙江
不好意思想问一下挂了的话会怎么通知?还是不会有消息
点赞 回复 分享
发布于 2024-04-13 10:06 上海
面试官说面的还不错,然后被挂过好多次😂可能是排序,没排出来
点赞 回复 分享
发布于 2024-04-11 23:00 上海
唉,这种情况我也遇到了
点赞 回复 分享
发布于 2024-04-11 15:06 辽宁
为啥是日常实习 现在暑期不也开了吗
点赞 回复 分享
发布于 2024-04-08 13:31 北京

相关推荐

✅一面 1.首先是自我介绍和过项目,面试官还一起探讨项目用到的方法,可行性之类的2.介绍一下 CLIP3.了解 LoRA 吗, LoRA 微调的原理是什么4.了解哪些多模态大模型,简要介绍几个5.BLIP的三个损失函数分别是什么,数据是怎样清洗的6.BLIP2相对于 BLIP 有哪些改进,BLIP3又有哪些改进7.Qwen- VL 的三个训练流程分别是什么,有什么作用8.视觉编码器和 LLM 连接时,使用BLIP2中 Q - Former 那种复杂的 Adaptor 好还是 LLaVA 中简单的 MLP 好,说说各自的优缺点9.代码:实现多头自注意力一面比较常规,几乎都是八股问题,我觉得只要了解常见的多模态大模型都问题不大,主要还是要理解各个模型设计的动机是什么,这也是面试最喜欢考察的✅二面1.自我介绍和过项目,简要问了项目中使用某些方法的动机,以及是否会导致其他的问题2.了解 Transformer 吗,编码器和解码器的注意力有什么区别,在计算注意力中时除以 dk \ sqrt { d _ k }\ sqrt [ d _ k }的原因是什么3.后来有哪些比较经典的基于 Transformer 的语言模型, Qwen 相比于原始 Transformer 有哪些结构上的改动,Qwen2又有哪些改进4.了解 RLHF 吗, DPO 和 PPO 有什么区别, Loss 是什么样的,各自的优缺点是什么5.介绍一下 CLIP ,还了解什么其他的对比学习方法6.开放题:了解哪些多模态大模型,目前多模态大模型最的问题是什么7.代码:1143.最长公共子序列二面其实也偏常规,几乎也都是八股问题,但是也考察了一些对模型的理解以及知识面的广度,整体来说比一面的难度大一些✅三面:1.自我介绍,然后详细过了一下项目2.了解哪些大模型和多模态大模型,然后就聊了大模型这一路是怎么发展过来的,Transformer 、 BERT 、 GPT 、 LLaMA 、 Qwen ix ,以及当时的o1推理模型3.平常有尝试过训练过大模型吗,规模小一点的也没关系4.聊天,包括职业规划等等三面比较轻松,面试官说知识点前面两面都考察过了,三面就轻松一些,大概40来分钟吧📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
点赞 评论 收藏
分享
评论
1
2
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务