首页
题库
公司真题
专项练习
面试题库
在线编程
面试
面试经验
AI 模拟面试
简历
求职
学习
基础学习课
实战项目课
求职辅导课
专栏&文章
竞赛
我要招人
发布职位
发布职位、邀约牛人
更多企业解决方案
AI面试、笔试、校招、雇品
HR免费试用AI面试
最新面试提效必备
登录
/
注册
小狗碎冰冰
东北大学 Java
关注
已关注
取消关注
@林小白zii:
深度学习面经-推荐算法系列
一、简介 搜广推算法在各大互联网公司中承担着重要的流量转化的作用,其中推荐算法作为一个重要分支,它旨在为用户提供个性化的推荐内容,以提高用户体验和满足他们的需求。推荐算法的应用范围非常广泛,包括电子商务、社交媒体、音乐和视频流媒体、新闻推荐等各个领域。以下是一些可能出现在推荐算法系列面试中的主题和问题,面经请关注专栏:小白机器学习面试指南。持续更新中。 二、面经及参考回答 1、你了解的常见的召回策略,算法有哪些? 参考回答:召回算法用于从大规模数据集中快速筛选出一组候选项,以供后续的排序和推荐处理。常见的召回有下面几种: 基于内容的召回:基于物品的内容召回:使用物品的属性和特征,如文本、标签或图像,来计算物品之间的相似度,以推荐相似的物品。 基于用户的内容召回:分析用户的历史行为和个人资料,以确定他们对内容的兴趣,并为其推荐相关内容。 协同过滤召回:基于用户的协同过滤:根据用户与其他用户的相似性,为目标用户推荐与相似用户喜欢的物品。基于物品的协同过滤:根据物品之间的相似性,为用户推荐与他们以前喜欢的物品相似的物品。 矩阵分解:矩阵分解方法,如奇异值分解(SVD)和交替最小二乘(ALS),用于将用户-物品交互矩阵分解为潜在因子矩阵,以捕捉用户和物品之间的潜在关系。这些方法通常用于协同过滤。 基于流行度的召回:流行度召回方法会根据物品的全局流行度为用户推荐物品。这意味着用户将看到最热门的物品,无论他们的兴趣如何。 基于规则的召回:基于规则的召回使用预定义的规则来选择候选物品。这些规则可以是手动制定的,也可以通过机器学习方法自动学习得出。在业务迭代初期,一般会使用这种召回方法; 深度学习召回:使用深度学习模型(如神经网络)进行召回,这些模型可以从用户历史数据中学习用户和物品之间的复杂关系,以生成召回结果。 多通道召回:使用多个不同的召回算法,并将它们的结果合并或加权,以提高推荐的多样性和准确性。 2、协同过滤存在什么问题? 参考回答:泛化能力弱。即协同过滤无法将两个物品相似的信息推广到其他物品的相似性上。导致的问题是热门物品具有很强的头部效应,容易跟大量物品产生相似,而尾部物品由于特征向量稀疏,导致很少被推荐。协同过滤的特点就是完全没有利用到物品本身或者是用户自身的属性,仅仅利用了用户与物品的交互信息就可以实现推荐,比较简单高效,但这也是它的一个短板所在,由于无法有效的引入用户年龄,性别,商品描述,商品分类,当前时间,地点等一系列用户特征、物品特征和上下文特征,这就造成了有效信息的遗漏,不能充分利用其它特征数据。 3、协同过滤有哪些可以改进的? 参考回答:加一些参数权重对热门物品,以及活跃用户进行一些惩罚。或者利用矩阵分解,使用更稠密的隐向量表示用户和物品,挖掘用户和物品的隐含兴趣和隐含特征。 4、什么时候使用UserCF,什么时候使用ItemCF?为什么? 参考回答:UserCF:由于是基于用户相似度进行推荐,所以具备更强的社交特性,这样的特点非常适于用户少,物品多,时效性较强的场合,比如新闻推荐场景,因为新闻本身兴趣点分散,相比用户对不同新闻的兴趣偏好,新闻的及时性,热点性往往更加重要,所以正好适用于发现热点,跟踪热点的趋势。对于用户较少,要求时效性较强的场合,就可以考虑UserCF。ItemCF:这个更适用于兴趣变化较为稳定的应用,更接近于个性化的推荐,适合用户兴趣固定持久,物品更新速度不是太快的场合,比如推荐艺术品,音乐,电影。 5、什么是faiss,它的原理是什么? 参考回答:faiss是FaceBook的AI团队开源的一套用于做稠密向量聚类和相似性搜索的软件库,它包含在任意大小向量上的搜索算法,也支持评估和参数调节。Faiss包含多种相似度检索方法,通过L2(欧氏距离)和点积确定,同时也支持余弦相似度来计算向量距离。它主要是通过向量压缩进行计算,而不是通过使用原型向量进行比较,这种方法虽然降低精度,但是可以极大缩小存储空间以及检索速度,可以达到近似检索。faiss本质是: 使用PCA、K-means、PQ等算法对数据进行操作,对数据进行分群,每一个群都有一个Index,根据要查找数据的与每个Index距离大小,定位要查找的那个群,也就是缩小了数据查找范围,进而加速。 6、还了解其他向量检索的方法吗? 参考回答:其他向量检索的方式 Kd - tree;kd - tree的构建方式是根据我们输入的多维embedding。每次分裂的时候,会选择方差最大的一列,然后选择这一列的中位数去划分结点,直到每一个结点都有一个向量,这样kd-tree就构建完成了。kdtree的查找:向量的查找也是每次从根节点出发,开始对比,比如这个结点是按照第三列某一个数划分的,就比较这个向量这个位置的数和这个结点的数的大小,从而判定是往左走还是往右走,最终会落到一个结点上,但是这样找不一定是最近的,如果还有更近的,就会回溯到上一个分裂点,看另一个结点的距离。 7、双塔的user侧特征和item侧的特征可以做交叉吗? 参考回答:可以的, 最简单的方式是取用户特征和物品特征的点积,这可以被看作是一种线性交叉方式。这个点积可以被加入到模型的最后输出或中间层。特征交叉可以更好地捕捉用户和物品之间的关系,从而提高推荐系统的效果。如何进行交叉需要根据具体问题和数据来设计和优化。 8、相似度的度量方法有哪些? 参考回答:Jaccard相关系数: 两个用户u和v所交互商品的交集的数量占这两个用户交互商品并集的数量的比例,称为两个集合的杰卡德相似系数,余弦相似度,在此基础上引入皮尔逊相关系数。余弦相似度没有考虑到不同用户平均打分偏差的问题,最直观的理解就是某一个用户的品味很高,对任何商品打分都很低,这样计算出来的余弦相似度就有差异,引入偏置a,b分别为a的平均打分情况,b的平均打分情况,每一个参数都减去这个平均值,然后再来计算。 9、矩阵分解的原理,具体是怎么分解的? 参考回答:矩阵分解算法将 m×n 维的共享矩阵 R 分解成 m×k 维的用户矩阵 U 和 k×n 维的物品矩阵 V 相乘的形式。其中m是用户数量,n是物品数量,k是隐向量维度,也就是隐含特征个数, k的大小决定了隐向量表达能力的强弱,k越大,表达信息就越强,理解起来就是把用户的兴趣和物品的分类划分的越具体。 矩阵分解的求解: 常用的做法就是特征值分解(EVD),奇异值分解(SVD)。但是特征值分解它要求分解的矩阵是方阵,在推荐系统中,显然用户-物品矩阵不满足这个要求,而传统的SVD分解,会要求原始矩阵是稠密的,而我们这里的这种矩阵一般情况下是非常稀疏的,如果想用奇异值分解,就必须对缺失的元素进行填充,而一旦补全,空间复杂度就会非常高,且补的不一定对。 然后就是SVD分解计算复杂度非常高,而我们的用户-物品矩阵非常大, 所以基本上无法使用。 Funk SVD:所以具体对SVD进行一些改变,用一种叫Funk SVD来进行求解。只针对矩阵中有用户评分的信息进行分解。Funk-SVD的思想很简单,把求解上面两个矩阵的参数问题转换成一个最优化问题,可以通过训练集里面的观察值利用最小化来学习用户矩阵和物品矩阵。FunkSVD的做法:因为我们已经有了用
点赞 10
评论 1
全部评论
推荐
最新
楼层
暂无评论,快来抢首评~
相关推荐
08-05 14:31
吉林大学 产品经理
搜狐畅游真有这么急嘛?
看到30号校招放出来的岗位,还是急招我投了看看这么个事
投递搜狐畅游等公司10个岗位
点赞
评论
收藏
分享
08-05 11:33
辽宁大学 营销
秋招,我真没招了...
本来想试试水,结果连笔试都没有
点赞
评论
收藏
分享
07-20 10:33
湖北汽车工业学院 供应链管理
到底谁在就业呀!这样的简历是不是很差?
点赞
评论
收藏
分享
08-02 14:39
华中科技大学 Java
java简历求指教
求大佬指点。目前一段大厂实习,在考虑是否需要再做一个项目,还是直接准备八股等待面试。
点赞
评论
收藏
分享
今天 16:53
中南大学 Java
英伟达想招谁?
打开英伟达笔试一看,看傻了,两个小时六道编程大题,什么样的人才能做完这种笔试题。。。
投递英伟达等公司10个岗位
点赞
评论
收藏
分享
评论
点赞成功,聊一聊 >
点赞
收藏
分享
评论
提到的真题
返回内容
全站热榜
更多
1
...
25年秋招精心整理的最新互联网大厂笔面试题集合
2.0W
2
...
暑期实习转正自评,你就这么写!
4994
3
...
26秋招-拓竹嵌入式软件面经
4252
4
...
本华为OD终于翻身!(百度后端面经)
3904
5
...
重生之我在牛客写简历。
2985
6
...
字节秋招-后端开发-一面
2618
7
...
字节意向
2169
8
...
打工人基本微信沟通礼仪
2129
9
...
亚信科技java实习面经
2105
10
...
字节秋招意向
2035
创作者周榜
更多
正在热议
更多
#
我的秋招“寄”录
#
5476次浏览
90人参与
#
每个月的工资都是怎么分配的?
#
58232次浏览
565人参与
#
去哪儿旅行秋招
#
221383次浏览
3161人参与
#
实习的内耗时刻
#
11467次浏览
163人参与
#
你上一次给父母打电话是什么时候
#
4990次浏览
58人参与
#
独居后,你的生活是更好了还是更差了?
#
3737次浏览
67人参与
#
华丞电子求职进展汇总
#
22165次浏览
224人参与
#
入职第二天,午饭怎么解决
#
26294次浏览
75人参与
#
规定下班时间vs实际下班时间
#
7323次浏览
57人参与
#
工作上你捅过哪些篓子?
#
5690次浏览
41人参与
#
深信服求职进展汇总
#
209550次浏览
1724人参与
#
得物求职进展汇总
#
103503次浏览
826人参与
#
视觉/交互/设计百问百答
#
52498次浏览
442人参与
#
你觉得材料多少算高薪
#
22063次浏览
148人参与
#
今年形式下双非本找得到工作吗
#
207315次浏览
1281人参与
#
秋招笔面试记录
#
99206次浏览
1895人参与
#
奇葩时刻大赏
#
56777次浏览
237人参与
#
央国企投递记录
#
98956次浏览
1409人参与
#
你们公司哪个部门最累?
#
29797次浏览
214人参与
#
秋招想进国企该如何准备
#
80763次浏览
439人参与
#
美团秋招笔试
#
63671次浏览
407人参与
#
tplink提前批进度交流
#
195111次浏览
1477人参与
牛客网
牛客网在线编程
牛客网题解
牛客企业服务