Spark 与 MapReduce Shuffle 对比:宽依赖的代价与数据重分布(215)

## Spark与MapReduce Shuffle对比:宽依赖的代价与数据重分布 🔄

在大数据处理中,Shuffle是实现数据重分布的关键操作,但不同框架对其处理方式大相径庭。MapReduce和Spark面对宽依赖时,展现出截然不同的性能特征和设计哲学。

MapReduce的Shuffle是"全量搬运"模式 🚛,每个map任务都会将数据写入磁盘,reduce任务再从各个节点拉取数据。这种设计简单可靠,但会产生大量磁盘I/O和网络传输,特别是遇到宽依赖(如groupByKey)时,性能急剧下降⏬。由于MapReduce的批处理特性,这种代价是不可避免的。

Spark则采用更智能的Shuffle策略 🧠。通过弹性分布式数据集(RDD)的血缘关系,Spark可以优化执行计划,最小化Shuffle数据量。在宽依赖场景下,Spark支持两种Shuffle实现:基于哈希的Shuffle(适合小规模数据)和基于排序的Shuffle(适合大规模数据)🔀。此外,Spark的内存计算特性允许部分Shuffle数据缓存在内存中,大幅减少磁盘I/O。

数据重分布时,Spark还支持自定义分区器(Partitioner) 🎛️,用户可以针对特定场景优化数据分布。而MapReduce的Partitioner选择相对固定,缺乏这种灵活性。

总结来看,Spark通过内存计算、执行计划优化和灵活的Shuffle策略,显著降低了宽依赖的代价 💪。而MapReduce的"全量Shuffle"虽然稳定,但在性能上已显疲态。这也解释了为什么Spark能在大数据领域逐步取代MapReduce成为主流计算引擎 🚀。
5G.okatady121.asia/PoSt/1125_993051.HtM
5G.okatady120.asia/PoSt/1125_870158.HtM
5G.okatady119.asia/PoSt/1125_847027.HtM
5G.okatady118.asia/PoSt/1125_881901.HtM
5G.okatady117.asia/PoSt/1125_063047.HtM
5G.okatady116.asia/PoSt/1125_281995.HtM
5G.okatady115.asia/PoSt/1125_211591.HtM
5G.okatady114.asia/PoSt/1125_920168.HtM
5G.okatady113.asia/PoSt/1125_373136.HtM
5G.okatady112.asia/PoSt/1125_022381.HtM
5G.okatady121.asia/PoSt/1125_360444.HtM
5G.okatady120.asia/PoSt/1125_047214.HtM
5G.okatady119.asia/PoSt/1125_552616.HtM
5G.okatady118.asia/PoSt/1125_700103.HtM
5G.okatady117.asia/PoSt/1125_392900.HtM
5G.okatady116.asia/PoSt/1125_426670.HtM
5G.okatady115.asia/PoSt/1125_709693.HtM
5G.okatady114.asia/PoSt/1125_978965.HtM
5G.okatady113.asia/PoSt/1125_161695.HtM
5G.okatady112.asia/PoSt/1125_826770.HtM
5G.okatady121.asia/PoSt/1125_244265.HtM
5G.okatady120.asia/PoSt/1125_449739.HtM
5G.okatady119.asia/PoSt/1125_143439.HtM
5G.okatady118.asia/PoSt/1125_885903.HtM
5G.okatady117.asia/PoSt/1125_437828.HtM
5G.okatady116.asia/PoSt/1125_114626.HtM
5G.okatady115.asia/PoSt/1125_261486.HtM
5G.okatady114.asia/PoSt/1125_841292.HtM
5G.okatady113.asia/PoSt/1125_444270.HtM
5G.okatady112.asia/PoSt/1125_093509.HtM
5G.okatady121.asia/PoSt/1125_130451.HtM
5G.okatady120.asia/PoSt/1125_555066.HtM
5G.okatady119.asia/PoSt/1125_659404.HtM
5G.okatady118.asia/PoSt/1125_333693.HtM
5G.okatady117.asia/PoSt/1125_704555.HtM
5G.okatady116.asia/PoSt/1125_332922.HtM
5G.okatady115.asia/PoSt/1125_759473.HtM
5G.okatady114.asia/PoSt/1125_100528.HtM
5G.okatady113.asia/PoSt/1125_929581.HtM
5G.okatady112.asia/PoSt/1125_697843.HtM
5G.okatady121.asia/PoSt/1125_730898.HtM
5G.okatady120.asia/PoSt/1125_777800.HtM
5G.okatady119.asia/PoSt/1125_510807.HtM
5G.okatady118.asia/PoSt/1125_969379.HtM
5G.okatady117.asia/PoSt/1125_330415.HtM
5G.okatady116.asia/PoSt/1125_736055.HtM
5G.okatady115.asia/PoSt/1125_110803.HtM
5G.okatady114.asia/PoSt/1125_256428.HtM
5G.okatady113.asia/PoSt/1125_076451.HtM
5G.okatady112.asia/PoSt/1125_398462.HtM
5G.okatady121.asia/PoSt/1125_804048.HtM
5G.okatady120.asia/PoSt/1125_139017.HtM
5G.okatady119.asia/PoSt/1125_645043.HtM
5G.okatady118.asia/PoSt/1125_074740.HtM
5G.okatady117.asia/PoSt/1125_848370.HtM
5G.okatady116.asia/PoSt/1125_852206.HtM
5G.okatady115.asia/PoSt/1125_134898.HtM
5G.okatady114.asia/PoSt/1125_151969.HtM
5G.okatady113.asia/PoSt/1125_371165.HtM
5G.okatady112.asia/PoSt/1125_685900.HtM
5G.okatady121.asia/PoSt/1125_727896.HtM
5G.okatady120.asia/PoSt/1125_288668.HtM
5G.okatady119.asia/PoSt/1125_815914.HtM
5G.okatady118.asia/PoSt/1125_005166.HtM
5G.okatady117.asia/PoSt/1125_126781.HtM
5G.okatady116.asia/PoSt/1125_730588.HtM
5G.okatady115.asia/PoSt/1125_248969.HtM
5G.okatady114.asia/PoSt/1125_817840.HtM
5G.okatady113.asia/PoSt/1125_140809.HtM
5G.okatady112.asia/PoSt/1125_026617.HtM
5G.okatady121.asia/PoSt/1125_888640.HtM
5G.okatady120.asia/PoSt/1125_333841.HtM
5G.okatady119.asia/PoSt/1125_358676.HtM
5G.okatady118.asia/PoSt/1125_695677.HtM
5G.okatady117.asia/PoSt/1125_511939.HtM
5G.okatady116.asia/PoSt/1125_228592.HtM
5G.okatady115.asia/PoSt/1125_992747.HtM
5G.okatady114.asia/PoSt/1125_680530.HtM
5G.okatady113.asia/PoSt/1125_360643.HtM
5G.okatady112.asia/PoSt/1125_272906.HtM

全部评论

相关推荐

评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务