牛顿迭代法求极值:MATLAB实战

牛顿迭代法求极值的基本原理

牛顿迭代法是一种基于二阶泰勒展开的优化方法,通过迭代逼近函数的极值点。对于目标函数( f(x) ),其极值点需满足( f'(x)=0 )。牛顿法的迭代公式为: [ x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} ] 该公式通过当前点的梯度(一阶导数)和曲率(二阶导数)信息调整下一步的搜索方向。

MATLAB实现步骤

定义目标函数及其导数 在MATLAB中需预先定义函数及其一阶、二阶导数。例如对于函数( f(x) = x^3 - 2x^2 + 4 ):

function y = f(x)
    y = x^3 - 2*x^2 + 4;
end

function dy = df(x)
    dy = 3*x^2 - 4*x;
end

function ddy = ddf(x)
    ddy = 6*x - 4;
end

初始化参数 设置初始猜测值( x_0 )、最大迭代次数和收敛容差:

x0 = 1.5;       % 初始点
max_iter = 50; % 最大迭代次数
tol = 1e-6;    % 收敛阈值

迭代过程实现 通过循环更新( x )值直至满足收敛条件:

for iter = 1:max_iter
    x_new = x0 - df(x0)/ddf(x0);
    if abs(x_new - x0) < tol
        break;
    end
    x0 = x_new;
end
fprintf('极值点: x = %.6f, f(x) = %.6f\n', x0, f(x0));

处理边界情况与优化建议

二阶导数为零的检查 在迭代中需避免除零错误,可增加条件判断:

if abs(ddf(x0)) < eps
    error('二阶导数为零,无法继续迭代');
end

多变量函数的扩展 对于多元函数( f(\mathbf{x}) ),需使用Hessian矩阵(二阶导矩阵)和梯度向量: [ \mathbf{x}_{k+1} = \mathbf{x}_k - H^{-1}(\mathbf{x}_k) \nabla f(\mathbf{x}_k) ] MATLAB实现需借助sym工具箱或手动计算偏导数。

收敛性与可视化分析

绘制迭代轨迹 通过记录每次迭代的( x )值可观察收敛路径:

x_vals = [x0];
for iter = 1:max_iter
    x_new = x0 - df(x0)/ddf(x0);
    x_vals = [x_vals, x_new];
    if abs(x_new - x0) < tol
        break;
    end
    x0 = x_new;
end
plot(x_vals, f(x_vals), '-o');
xlabel('x'); ylabel('f(x)');

初始点敏感性测试 尝试不同初始点(如( x_0 = 0 )与( x_0 = 2 ))可验证算法是否收敛到全局极值。对于非凸函数,建议结合其他方法(如梯度下降)避免局部最优。

BbS.okapop184.sbs/PoSt/1122_950469.HtM
BbS.okapop185.sbs/PoSt/1122_116616.HtM
BbS.okapop186.sbs/PoSt/1122_520999.HtM
BbS.okapop187.sbs/PoSt/1122_618426.HtM
BbS.okapop188.sbs/PoSt/1122_423157.HtM
BbS.okapop190.sbs/PoSt/1122_084027.HtM
BbS.okapop191.sbs/PoSt/1122_962321.HtM
BbS.okapop192.sbs/PoSt/1122_614462.HtM
BbS.okapop193.sbs/PoSt/1122_285161.HtM
BbS.okapop194.sbs/PoSt/1122_136810.HtM
BbS.okapop184.sbs/PoSt/1122_884330.HtM
BbS.okapop185.sbs/PoSt/1122_006272.HtM
BbS.okapop186.sbs/PoSt/1122_698711.HtM
BbS.okapop187.sbs/PoSt/1122_378795.HtM
BbS.okapop188.sbs/PoSt/1122_066618.HtM
BbS.okapop190.sbs/PoSt/1122_383780.HtM
BbS.okapop191.sbs/PoSt/1122_814012.HtM
BbS.okapop192.sbs/PoSt/1122_702996.HtM
BbS.okapop193.sbs/PoSt/1122_299868.HtM
BbS.okapop194.sbs/PoSt/1122_359321.HtM
BbS.okapop184.sbs/PoSt/1122_683565.HtM
BbS.okapop185.sbs/PoSt/1122_251555.HtM
BbS.okapop186.sbs/PoSt/1122_430114.HtM
BbS.okapop187.sbs/PoSt/1122_467121.HtM
BbS.okapop188.sbs/PoSt/1122_699230.HtM
BbS.okapop190.sbs/PoSt/1122_627315.HtM
BbS.okapop191.sbs/PoSt/1122_583931.HtM
BbS.okapop192.sbs/PoSt/1122_744860.HtM
BbS.okapop193.sbs/PoSt/1122_551772.HtM
BbS.okapop194.sbs/PoSt/1122_828198.HtM
BbS.okapop184.sbs/PoSt/1122_288468.HtM
BbS.okapop185.sbs/PoSt/1122_589768.HtM
BbS.okapop186.sbs/PoSt/1122_707240.HtM
BbS.okapop187.sbs/PoSt/1122_752712.HtM
BbS.okapop188.sbs/PoSt/1122_224096.HtM
BbS.okapop190.sbs/PoSt/1122_133243.HtM
BbS.okapop191.sbs/PoSt/1122_603554.HtM
BbS.okapop192.sbs/PoSt/1122_045149.HtM
BbS.okapop193.sbs/PoSt/1122_038111.HtM
BbS.okapop194.sbs/PoSt/1122_542471.HtM
BbS.okapop184.sbs/PoSt/1122_551703.HtM
BbS.okapop185.sbs/PoSt/1122_727087.HtM
BbS.okapop186.sbs/PoSt/1122_495233.HtM
BbS.okapop187.sbs/PoSt/1122_236831.HtM
BbS.okapop188.sbs/PoSt/1122_599906.HtM
BbS.okapop190.sbs/PoSt/1122_232134.HtM
BbS.okapop191.sbs/PoSt/1122_141573.HtM
BbS.okapop192.sbs/PoSt/1122_585452.HtM
BbS.okapop193.sbs/PoSt/1122_146776.HtM
BbS.okapop194.sbs/PoSt/1122_634824.HtM
BbS.okapop184.sbs/PoSt/1122_299441.HtM
BbS.okapop185.sbs/PoSt/1122_985303.HtM
BbS.okapop186.sbs/PoSt/1122_309373.HtM
BbS.okapop187.sbs/PoSt/1122_805832.HtM
BbS.okapop188.sbs/PoSt/1122_168507.HtM
BbS.okapop190.sbs/PoSt/1122_571900.HtM
BbS.okapop191.sbs/PoSt/1122_845570.HtM
BbS.okapop192.sbs/PoSt/1122_627040.HtM
BbS.okapop193.sbs/PoSt/1122_996654.HtM
BbS.okapop194.sbs/PoSt/1122_384985.HtM
BbS.okapop195.sbs/PoSt/1122_353877.HtM
BbS.okapop196.sbs/PoSt/1122_473756.HtM
BbS.okapop197.sbs/PoSt/1122_652274.HtM
BbS.okapop198.sbs/PoSt/1122_852594.HtM
BbS.okapop199.sbs/PoSt/1122_123498.HtM
BbS.okapop200.sbs/PoSt/1122_057127.HtM
BbS.okapop201.sbs/PoSt/1122_864517.HtM
BbS.okapop261.sbs/PoSt/1122_875308.HtM
BbS.okapop287.sbs/PoSt/1122_222870.HtM
BbS.okapop288.sbs/PoSt/1122_873152.HtM
BbS.okapop195.sbs/PoSt/1122_061014.HtM
BbS.okapop196.sbs/PoSt/1122_207398.HtM
BbS.okapop197.sbs/PoSt/1122_691252.HtM
BbS.okapop198.sbs/PoSt/1122_382936.HtM
BbS.okapop199.sbs/PoSt/1122_662890.HtM
BbS.okapop200.sbs/PoSt/1122_685517.HtM
BbS.okapop201.sbs/PoSt/1122_076943.HtM
BbS.okapop261.sbs/PoSt/1122_120139.HtM
BbS.okapop287.sbs/PoSt/1122_986168.HtM
BbS.okapop288.sbs/PoSt/1122_237287.HtM

#牛客AI配图神器#

全部评论

相关推荐

迷茫的大四🐶:价格这么低都能满了?
点赞 评论 收藏
分享
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务