PyTorch强化学习实战:从零到精通

PyTorch 强化学习 Demo:从理论到实践

强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,通过与环境的交互学习最优策略。PyTorch 作为深度学习框架,因其动态计算图和易用性,成为实现强化学习算法的热门选择。以下是一个基于 PyTorch 的强化学习 Demo,涵盖环境搭建、算法实现和训练流程。

环境搭建

选择 OpenAI Gym 作为实验环境,它提供了多种标准化的强化学习任务。安装 Gym 和 PyTorch:

pip install gym torch

以 CartPole 任务为例,目标是控制小车保持平衡,使杆子不倒。创建环境:

import gym
env = gym.make('CartPole-v1')

Q-Learning 算法实现

Q-Learning 是一种经典的强化学习算法,通过更新 Q 值表来学习最优策略。以下是 PyTorch 实现的核心部分:

import torch
import torch.nn as nn
import torch.optim as optim

class QNetwork(nn.Module):
    def __init__(self, state_size, action_size):
        super(QNetwork, self).__init__()
        self.fc1 = nn.Linear(state_size, 64)
        self.fc2 = nn.Linear(64, 64)
        self.fc3 = nn.Linear(64, action_size)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        return self.fc3(x)

经验回放机制

强化学习通常需要经验回放(Experience Replay)来提高样本利用率。实现一个简单的回放缓冲区:

import random
from collections import deque

class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = deque(maxlen=capacity)

    def push(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size):
        return random.sample(self.buffer, batch_size)

    def __len__(self):
        return len(self.buffer)

训练流程

将上述组件整合为完整的训练流程,包括环境交互、模型更新和策略优化:

def train(env, model, target_model, optimizer, buffer, batch_size=32, gamma=0.99):
    state = env.reset()
    episode_reward = 0

    for t in range(1000):
        state_tensor = torch.FloatTensor(state).unsqueeze(0)
        q_values = model(state_tensor)
        action = q_values.argmax().item()

        next_state, reward, done, _ = env.step(action)
        buffer.push(state, action, reward, next_state, done)
        episode_reward += reward

        if len(buffer) >= batch_size:
            transitions = buffer.sample(batch_size)
            batch = list(zip(*transitions))

            states = torch.FloatTensor(batch[0])
            actions = torch.LongTensor(batch[1])
            rewards = torch.FloatTensor(batch[2])
            next_states = torch.FloatTensor(batch[3])
            dones = torch.FloatTensor(batch[4])

            current_q = model(states).gather(1, actions.unsqueeze(1))
            next_q = target_model(next_states).max(1)[0].detach()
            target_q = rewards + gamma * next_q * (1 - dones)

            loss = nn.MSELoss()(current_q.squeeze(), target_q)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        if done:
            break

    return episode_reward

模型评估与改进

训练完成后,评估模型性能并考虑以下改进方向:

  • 使用 Double DQN 减少过估计问题
  • 引入 Prioritized Experience Replay 提高关键样本的利用率
  • 尝试 Dueling DQN 架构分离状态价值和优势函数

可视化训练过程

通过 Matplotlib 绘制训练过程中的奖励曲线,直观展示模型的学习效果:

import matplotlib.pyplot as plt

rewards = []
for episode in range(100):
    reward = train(env, model, target_model, optimizer, buffer)
    rewards.append(reward)

plt.plot(rewards)
plt.xlabel('Episode')
plt.ylabel('Reward')
plt.show()

这个 Demo 展示了 PyTorch 在强化学习中的应用,从环境交互到算法实现,涵盖了关键组件。通过调整网络结构、超参数和训练策略,可以进一步优化性能。

BbS.okacop092.info/PoSt/1120_011724.HtM
BbS.okacop093.info/PoSt/1120_654834.HtM
BbS.okacop094.info/PoSt/1120_835646.HtM
BbS.okacop095.info/PoSt/1120_575273.HtM
BbS.okacop096.info/PoSt/1120_727467.HtM
BbS.okacop097.info/PoSt/1120_475811.HtM
BbS.okacop098.info/PoSt/1120_170575.HtM
BbS.okacop099.info/PoSt/1120_430242.HtM
BbS.okacop114.info/PoSt/1120_071375.HtM
BbS.okacop829.info/PoSt/1120_021140.HtM
BbS.okacop092.info/PoSt/1120_910743.HtM
BbS.okacop093.info/PoSt/1120_052403.HtM
BbS.okacop094.info/PoSt/1120_435049.HtM
BbS.okacop095.info/PoSt/1120_429420.HtM
BbS.okacop096.info/PoSt/1120_558448.HtM
BbS.okacop097.info/PoSt/1120_613017.HtM
BbS.okacop098.info/PoSt/1120_845079.HtM
BbS.okacop099.info/PoSt/1120_847364.HtM
BbS.okacop114.info/PoSt/1120_566564.HtM
BbS.okacop829.info/PoSt/1120_353054.HtM
BbS.okacop092.info/PoSt/1120_875228.HtM
BbS.okacop093.info/PoSt/1120_129526.HtM
BbS.okacop094.info/PoSt/1120_772317.HtM
BbS.okacop095.info/PoSt/1120_116852.HtM
BbS.okacop096.info/PoSt/1120_072523.HtM
BbS.okacop097.info/PoSt/1120_388670.HtM
BbS.okacop098.info/PoSt/1120_915034.HtM
BbS.okacop099.info/PoSt/1120_708469.HtM
BbS.okacop114.info/PoSt/1120_539659.HtM
BbS.okacop829.info/PoSt/1120_327440.HtM
BbS.okacop092.info/PoSt/1120_541795.HtM
BbS.okacop093.info/PoSt/1120_884897.HtM
BbS.okacop094.info/PoSt/1120_515395.HtM
BbS.okacop095.info/PoSt/1120_335951.HtM
BbS.okacop096.info/PoSt/1120_182457.HtM
BbS.okacop097.info/PoSt/1120_732875.HtM
BbS.okacop098.info/PoSt/1120_047301.HtM
BbS.okacop099.info/PoSt/1120_980968.HtM
BbS.okacop114.info/PoSt/1120_762881.HtM
BbS.okacop829.info/PoSt/1120_545384.HtM
BbS.okacop092.info/PoSt/1120_717642.HtM
BbS.okacop093.info/PoSt/1120_162365.HtM
BbS.okacop094.info/PoSt/1120_848888.HtM
BbS.okacop095.info/PoSt/1120_282490.HtM
BbS.okacop096.info/PoSt/1120_517077.HtM
BbS.okacop097.info/PoSt/1120_294212.HtM
BbS.okacop098.info/PoSt/1120_082991.HtM
BbS.okacop099.info/PoSt/1120_758781.HtM
BbS.okacop114.info/PoSt/1120_248353.HtM
BbS.okacop829.info/PoSt/1120_860298.HtM
BbS.okacop000.info/PoSt/1120_380448.HtM
BbS.okacop001.info/PoSt/1120_594475.HtM
BbS.okacop002.info/PoSt/1120_184614.HtM
BbS.okacop003.info/PoSt/1120_279928.HtM
BbS.okacop004.info/PoSt/1120_988688.HtM
BbS.okacop005.info/PoSt/1120_346382.HtM
BbS.okacop006.info/PoSt/1120_871799.HtM
BbS.okacop007.info/PoSt/1120_627505.HtM
BbS.okacop008.info/PoSt/1120_688957.HtM
BbS.okacop009.info/PoSt/1120_274356.HtM
BbS.okacop000.info/PoSt/1120_922872.HtM
BbS.okacop001.info/PoSt/1120_507950.HtM
BbS.okacop002.info/PoSt/1120_821887.HtM
BbS.okacop003.info/PoSt/1120_551227.HtM
BbS.okacop004.info/PoSt/1120_517379.HtM
BbS.okacop005.info/PoSt/1120_996339.HtM
BbS.okacop006.info/PoSt/1120_780739.HtM
BbS.okacop007.info/PoSt/1120_217594.HtM
BbS.okacop008.info/PoSt/1120_287130.HtM
BbS.okacop009.info/PoSt/1120_508448.HtM
BbS.okacop000.info/PoSt/1120_305027.HtM
BbS.okacop001.info/PoSt/1120_052576.HtM
BbS.okacop002.info/PoSt/1120_197253.HtM
BbS.okacop003.info/PoSt/1120_208642.HtM
BbS.okacop004.info/PoSt/1120_451546.HtM
BbS.okacop005.info/PoSt/1120_314132.HtM
BbS.okacop006.info/PoSt/1120_569166.HtM
BbS.okacop007.info/PoSt/1120_453269.HtM
BbS.okacop008.info/PoSt/1120_702775.HtM
BbS.okacop009.info/PoSt/1120_437325.HtM

#牛客AI配图神器#

全部评论

相关推荐

一面(50min)1. 前后端都做过,为什么最后选择前端这个方向呢?2. HTML 的语义化的标签有哪些,语义化的作用3. CSS 的盒子模型,通过什么属性去进行设置4. 三栏布局如何实现5. position: sticky 是相对谁去进行偏移的6. 响应式布局的实现方案7. rem怎么设置8. 在不同屏幕(360px、375px、414px 等)上保持 “一行三等分元素” 的统一效果,怎么实现9. JS 的闭包10. 什么是防抖节流,如果不停的触发,时间都是 500 毫秒,那如果在 3 秒内,那防抖,节流会触发几次11. JS 事件冒泡和捕获的过程12. Vue 有哪些核心特点13. Vue 为什么要替 jQuery 呢14. 为什么要做性能优化15. 首屏加载完成了,这个指标从哪里去读16. 什么是LCP,最大的元素是怎么定义的17. 了解网页上的一个资源加载的一个瀑布流吗?怎么用浏览器查看18. 从输入网页地址到首屏加载完成,整个过程是什么样的19. http1.0, 1.1, 2.0的区别20. HTML 的这个渲染过,JS 会不会阻塞 HTML 的渲染流程21. 手写Promise.race二面(60min)1. JS 的事件循环,日常中,比如你写一个代码逻辑,有哪些场景会触发这些?有哪些是宏任务,有哪些是微任务?2. JS 的原型链3. history 和 hash 两种路由以及它的两差别和常用的用法4. JS的内存泄漏5. React 的 常见hooks 的用法6. 阐述一下使用 axios 的 API 开始构造一个 post 请求。从代码角度以及从代码开始写之后,操作系统以及它底下的链路是怎么运行的7. HTTP 请求和 HTTPS的区别8. SSL/TLS握手在哪一步执行9. 手撕嵌套数组对象的广度和深度遍历(递归和栈分别实现)10. Webpack 的工作原理和工作流程11. Git 的相关的命令有哪些12. git rebase和 git merge 的区别是什么13. 怎么去看待小米的这个公司的发展的情况14. 怎么去看待个人的技术发展与那个公司的业务发展这两个之间关系
点赞 评论 收藏
分享
11-18 17:12
门头沟学院 Java
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务