嵌入式模拟面试拷打【1】

1. 请解释如何在STM32中生成PWM波,以及如何计算其频率和占空比。

解答:

在STM32中,PWM(脉宽调制)波形的生成依赖于定时器模块。PWM的频率和占空比的计算涉及定时器的时钟频率、预分频器(Prescaler)、自动重装载寄存器(ARR,Auto-Reload Register)和捕获比较寄存器(CCR,Capture/Compare Register)的值。

  • PWM频率:PWM的频率由定时器的时钟频率和自动重装载寄存器的值决定。公式如下:[PWM_Frequency = \frac{Timer_Clock}{(ARR + 1)}]其中,Timer_Clock 是定时器的输入时钟频率,ARR 是自动重装载寄存器的值。
  • PWM占空比:占空比由捕获比较寄存器(CCR)的值与自动重装载寄存器(ARR)的值确定。公式如下:[Duty_Cycle (%) = \frac{CCR}{ARR + 1} \times 100%]通过改变 ARR 和 CCR 的值,可以调整PWM的频率和占空比。

2. FreeRTOS和RT-Thread两个实时操作系统有何主要区别?请从系统架构、任务管理、内存管理、和应用场景等方面进行比较。

解答:

FreeRTOS和RT-Thread都是广泛使用的嵌入式实时操作系统,但在系统架构、功能设计和应用场景上存在一定区别:

  • 系统架构:FreeRTOS: 轻量级,内核非常小巧,核心代码量少,设计简单,适合资源有限的系统。RT-Thread: 更为丰富的功能模块,包含完整的组件和软件包管理器,扩展性更强,但相应的占用资源也更多。
  • 任务管理:FreeRTOS: 采用基于优先级的抢占式调度,支持静态和动态任务创建。RT-Thread: 支持优先级调度,时间片轮转等,且内置更多的任务管理特性,如信号量、消息队列等。
  • 内存管理:FreeRTOS: 提供简单的内存分配方式,通常采用静态分配或者小块动态分配。RT-Thread: 支持动态内存管理,提供了更复杂的内存管理机制,如堆和栈的管理。
  • 应用场景:FreeRTOS: 适用于内存和资源非常有限的小型嵌入式系统。RT-Thread: 适用于需要丰富功能支持的嵌入式应用,如需要GUI、网络等功能的系统。

3. 在过往项目中,哪部分工作让你感到最困难?请描述该问题的背景,分析遇到的挑战,以及最终的解决方案。

解答:

在项目开发中,挑战通常来自于硬件兼容性问题、实时性要求高的任务调度、或资源受限的系统优化。以硬件兼容性为例:

  • 背景: 在一个项目中,我们使用了多种传感器,这些传感器在不同温度和湿度环境下表现不一致,导致采集的数据精度波动较大。
  • 挑战: 由于项目的时间紧迫性,我们无法对所有传感器进行逐一标定,也无法更换硬件。
  • 解决方案: 我们分析了各传感器的数据特性,发现其波动具有一定的模式,于是通过在软件层面加入数据滤波算法和校准曲线,减少了外界环境对传感器数据的影响。同时,调整了传感器采集的频率,以减少由环境因素引入的噪声。

4. 在嵌入式系统中,如何在串口中断中有效处理接收的数据?请详细描述典型的处理流程。

解答:

在串口中断处理中,通常的步骤如下:

  1. 中断触发: 串口接收到数据时触发中断。
  2. 读取数据: 在中断服务程序(ISR)中,从串口数据寄存器(如USART_DR)读取接收到的数据。
  3. 存储数据: 将读取到的数据存储在一个环形缓冲区或FIFO中,以便后续处理。这样可以避免在中断中执行耗时操作。
  4. 信号通知: 通过设置标志位或发送信号量,通知主循环或任务有新的数据可处理。
  5. 退出中断: 确保在中断中处理的时间尽量短,以减少中断延迟对系统的影响。

5. 如何在嵌入式系统中接收并解析一个大数据包(如1K字节以上,带帧头、帧长和校验码)?请描述详细的处理流程。

解答:

处理大数据包的流程通常如下:

  1. 初始化环形缓冲区: 使用一个足够大的环形缓冲区来存储接收到的数据。
  2. 分段接收: 在串口中断服务程序中,将接收到的数据段存入缓冲区,并持续检测是否收到完整帧头和帧长字段。
  3. 帧校验: 当数据接收完成后,根据帧长字段提取完整数据帧,使用校验码(如CRC或校验和)验证数据的完整性。
  4. 数据解析: 对校验通过的数据帧,解析出实际数据内容(如数据段、命令等)。
  5. 错误处理: 如果校验失败或接收超时,丢弃当前帧并重置缓冲区状态。

6. 请解释IIC(I²C)协议的工作原理及其典型应用场景。

解答:

IIC(I²C,Inter-Integrated Circuit)是一种串行通信协议,主要用于低速设备之间的短距离通信。IIC是半双工的,多主多从设计,具有以下特性:

  • 物理层: 使用两根信号线,分别是SCL(时钟线)和SDA(数据线),通过上拉电阻连接。
  • 通信过程: 起始条件: 主设备通过拉低SDA线并保持SCL线高电平,发出起始信号。数据传输: 在时钟信号SCL的引导下,数据位按高位在前的顺序通过SDA线传输。数据每传输8位后,接收方需要发送应答信号(ACK)。停止条件: 主设备拉高SDA线并保持SCL线高电平,发出停止信号,结束通信。
  • 应用场景: 适用于芯片间短距离通信,如MCU与EEPROM、传感器、实时钟(RTC)等器件之间的通信。

7. 请解释SPI(Serial Peripheral Interface)协议的基本原理及其在嵌入式系统中的典型应用。

解答:

SPI(Serial Peripheral Interface)是一种全双工的同步串行通信协议,通常用于微控制器和外围设备之间的高速通信。

  • 物理层: SPI通常使用四根线,分别是SCLK(串行时钟)、MOSI(主设备输出从设备输入)、MISO(主设备输入从设备输出)和SS/CS(从设备选择)。
  • 通信过程:时钟信号: 由主设备生成SCLK时钟信号,控制数据传输速率。数据传输: 数据在时钟边沿上同步传输,MOSI用于主设备向从设备发送数据,MISO用于从设备向主设备回传数据。从设备选择: 通过SS/CS信号选择相应的从设备。
  • 应用场景: 常用于高速数据传输的场景,如连接闪存、LCD显示屏、传感器、SD卡等外设。

8. 请简要解释CAN(Controller Area Network)协议的基本工作原理及其应用场景。

解答:

CAN(Controller Area Network)是一种串行通信协议,广泛用于汽车

剩余60%内容,订阅专栏后可继续查看/也可单篇购买

嵌入式八股/模拟面试拷打 文章被收录于专栏

一些八股模拟拷打Point,万一有点用呢

全部评论
收藏了
3 回复 分享
发布于 2024-08-24 23:49 黑龙江
10. 抢占式调度: 当一个高优先级任务变为就绪状态时,当前运行的低优先级任务会被挂起,高优先级任务立即被调度执行。”低优先级任务会被挂起“低优先级不是直接进入就绪态了吗
1 回复 分享
发布于 2024-09-09 19:27 安徽
值得收藏
1 回复 分享
发布于 2024-08-24 23:58 黑龙江
模拟面试哪里整的呀
点赞 回复 分享
发布于 2024-10-04 16:43 北京
来我司吗?江波龙😄
点赞 回复 分享
发布于 2024-09-08 10:07 上海
帮助很大
点赞 回复 分享
发布于 2024-08-22 20:35 湖北
膜拜大佬
点赞 回复 分享
发布于 2024-08-22 16:55 北京

相关推荐

评论
79
593
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务