题解 | #最长公共子序列(二)#
最长公共子序列(二)
https://www.nowcoder.com/practice/6d29638c85bb4ffd80c020fe244baf11
#
# 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
# longest common subsequence
# @param s1 string字符串 the string
# @param s2 string字符串 the string
# @return string字符串
#
import copy
class Solution:
def LCS(self , s1: str, s2: str) -> str:
# write code here
n1 = len(s1)
n2 = len(s2)
if n1 == 0 or n2 == 0:
return '-1'
i = 0
# dp[i][j]表示前i的s1和前j的s2之间的最长公共子序列
# dp[i+1][j+1]
# 如果s1[i] == s2[j], dp[i+1][j+1] = dp[i][j] + 1
# 如果s1[i] != s2[j], dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1])
dp = [['' for _ in range(n2 + 1)] for _ in range(n1 + 1)]
for i in range(n1):
for j in range(n2):
if i == 0 and j == 0:
dp[i][j] = s1[i] if s1[i] == s2[j] else ''
if s1[i] == s2[j]:
dp[i][j] = dp[i-1][j-1] + s1[i]
else:
if len(dp[i - 1][j]) > len(dp[i][j-1]):
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = dp[i][j-1]
rst = dp[-2][-2]
if rst == '':
return '-1'
else:
return rst

查看12道真题和解析