题解 | #最长公共子序列(二)#
最长公共子序列(二)
https://www.nowcoder.com/practice/6d29638c85bb4ffd80c020fe244baf11
最优子结构:dp[i][j]表示字符串s1第i位为结尾和字符串s2第j位为结尾的最长公共子序列的长度
#include <algorithm>
#include <iostream>
#include <vector>
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
* longest common subsequence
* @param s1 string字符串 the string
* @param s2 string字符串 the string
* @return string字符串
*/
string LCS(string s1, string s2) {
// write code here
if (s1.empty() || s2.empty()) {
return "-1";
}
//初始化dp,dp表示长度
vector<vector<int>> dp(s1.size()+1,vector<int>(s2.size()+1,0));
for (int i=0; i<s1.size()+1; i++) {
dp[i][0] =0;
}
for (int j=0; j<s2.size()+1; j++) {
dp[0][j] =0;
}
//遍历顺序
for (int i=1; i<s1.size()+1; i++) {
for (int j=1; j<s2.size()+1; j++) {
if (s1[i-1] == s2[j-1]) {//转态转移方程
dp[i][j] = dp[i-1][j-1] +1;
cout<<i<<j<<endl;
cout<<dp[i][j];
}else {
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
}
//回溯
string res = "";
for(int i=s1.size(),j=s2.size();dp[i][j] >= 1;)
{
if (s1[i-1] == s2[j-1]) {
res+=s1[i-1];
i--;
j--;
}else if (dp[i-1][j] > dp[i][j-1]) {
i--;
}else {
j--;
}
}
reverse(res.begin(),res.end());
cout<<res;
cout<<res.size();
return res.empty()?"-1":res;
}
};
