刷题记录|目标101题--二分查找
写在前面
关于二分法的左闭右闭还是左闭右开这篇文章写的比较好:https://zhuanlan.zhihu.com/p/141480088
No.1 Sqrt(x)
题目链接:https://leetcode.com/problems/sqrtx/
涉及到的算法:二分法
解题思路:
这里注意三个点,1.我们要使用左闭右闭,不然可能走不出循环
2. 如果是单调递增的函数则return r,反之return l
3。要使用除法,如果使用加***溢出
class Solution { public int mySqrt(int x) { if (x == 0 || x == 1) return x; int left = 1, right = x,mid = 0; while (left <= right) { mid = left + (right - left) / 2; int sqrt = x / mid; if (sqrt == mid) return mid; if (sqrt < mid) { right = mid - 1; } else { left = mid + 1; } } return right; } }
No. 2 Find First and Last Position of Element in Sorted Array
题目链接:https://leetcode.com/problems/find-first-and-last-position-of-element-in-sorted-array/ 解题方法:二分
解题思路:注意在while里循环的时候也要注意数组边界
class Solution { public int[] searchRange(int[] nums, int target) { int l = 0, r = nums.length - 1; int[] temp_result = {0,0}; if (nums.length == 1 && nums[0] == target) return temp_result; int[] result = {-1,-1}; while (l <= r) { int mid = l + (r - l)/2; if (nums[mid] == target) { int begin = mid, end = mid; while(begin >= 0 && nums[begin] == target) { result[0] = begin--; } while(end < nums.length && nums[end] == target) { result[1] = end++; } break; } else if (nums[mid] < target) { l = mid + 1; } else { r = mid - 1; } } return result; } }
No.3 Search in Rotated Sorted Array II
题目链接:https://leetcode.com/problems/search-in-rotated-sorted-array-ii/ 涉及到的算法:二分法
解题思路:
不需要找出究竟是在哪个点rotate的,只需要知道,如果nums[mid]>nums[l] 则左区间一定单调增,反之右区间一定单调增即可减少二分的步骤
注意这当nums[mid] == nums[l]的时候,无法区分究竟是左区间完全相同还是右区间完全相同,所以可以单纯的移动l++
class Solution { public boolean search(int[] nums, int target) { if (target == nums[0]) return true; int l = 0, r = nums.length - 1; while (l <= r) { int mid = l + (r - l) / 2; if (nums[mid] == target) return true; if (nums[mid] == nums[l]) { l++; } else if (nums[mid] < nums[l]) { if (target > nums[mid] && target <= nums[r]) { l = mid + 1; } else { r = mid - 1; } } else { if (target >= nums[l] && target < nums[mid]) { r = mid - 1; } else { l = mid + 1; } } } return false; } }
No.4 Find Minimum in Rotated Sorted Array II
题目链接:https://leetcode.com/problems/find-minimum-in-rotated-sorted-array-ii/ 解题思路:旋转数组的变形题,使用和旋转数组一样的思路。
每次得到一个单调区间,获取最小值,直至结束,注意如果nums[mid] == nums[l]时无法分辨大小,则单纯++
class Solution { public int findMin(int[] nums) { if (nums.length == 1) return nums[0]; if (nums.length == 2) return (nums[0] > nums[1]) ? nums[1] : nums[0]; int l = 0, r = nums.length - 1, min = Integer.MAX_VALUE; while (l <= r) { int mid = l + (r - l) / 2; if (nums[mid] == nums[l]) { min = Math.min(min,nums[l]); l ++; } else if (nums[mid] > nums[l]) { min = Math.min(min,nums[l]); l = mid + 1; } else { min = Math.min(min,nums[mid]); r = mid - 1; } } return min; } }
No. 5 Single Element in a Sorted Array
题目链接:https://leetcode.com/problems/single-element-in-a-sorted-array/
解题思路:二分法
这题的重点在与奇偶位数的变化。
- 如果mid是偶数,则
-
- 假如这个单身狗数没有出现,他应该和mid+1是一对组合,所以可以更新l
- 假如这个单数已经出现过了,则他应该和mid-1是一对,则更新r
- 如果这个mid是奇数
-
- 假如这个单身狗数没有出现,他应该和mid-1是一对组合,所以可以更新l
- 假如这个单数已经出现过了,则他应该和mid-1是一对,则更新r
class Solution { public int singleNonDuplicate(int[] nums) { if (nums.length == 1) return nums[0]; if (nums.length == 3) return nums[0] == nums[1] ? nums[2] : nums[0]; int l = 0, r = nums.length - 1; while (l <= r - 3) { int mid = l + (r - l) / 2; if (nums[mid - 1] != nums[mid] && nums[mid + 1] != nums[mid]) { return nums[mid]; } else if (mid %2 == 0) { if (nums[mid] == nums[mid + 1]) { l = mid + 2; } else { r = mid - 2; } } else { if (nums[mid] == nums[mid - 1]) { l = mid + 1; } else { r = mid - 1; } } } if (l == r) return nums[l]; return nums[l] == nums[l + 1] ? nums[r] : nums[l]; } }
No. 6 Median of Two Sorted Arrays
题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/ 解题思路:
这题的重点思路是:
两个数组找中位数,其实意味着寻找这个两个数组合并后的第k个元素的值,如果两个数组的位数是偶数,则分别寻找k-1和k求中位数,奇数则是第k个数字。
利用二分法,左边与右边各求一个中位数,如果nums1.mid < nums2.mid,则利用他们的递增性,可以抛弃nums1.left,下次循环去找nums1.right+nums2,反之找nums1+nums2.left.
class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length, n = nums2.length; return (getKthNumberInSortedArrays(nums1,0,nums2,0,(m + n + 1) / 2) + getKthNumberInSortedArrays(nums1,0,nums2,0,(m + n + 2) / 2) ) / 2; } private double getKthNumberInSortedArrays(int[] nums1,int start1, int[] nums2, int start2, int k) { if (start1 >= nums1.length) return nums2[start2 + k - 1]; if (start2 >= nums2.length) return nums1[start1 + k - 1]; if (k == 1) return Math.min(nums1[start1],nums2[start2]); int mid1 = start1 + k / 2 - 1; int mid2 = start2 + k / 2 - 1; int val1 = mid1 >= nums1.length ? Integer.MAX_VALUE : nums1[mid1]; int val2 = mid2 >= nums2.length ? Integer.MAX_VALUE : nums2[mid2]; if (val1 < val2) { return getKthNumberInSortedArrays(nums1,start1 + k/2,nums2,start2,k - k/2); } else { return getKthNumberInSortedArrays(nums1,start1,nums2,start2 + k/2,k - k/2); } } }