完全背包转化为多重背包

完全背包转化为多重背包

前言

在本篇文章当中主要给大家介绍如何将完全背包问题转化成多重背包问题,在前面的文章完全背包当中,我们仔细的介绍了完全背包的状态转移方程、根据状态转移方程如何完成代码以及多重背包的数组优化的原理,为什么这种优化能够有效!本篇文章主要专注于如何将完全背包转化成多重背包。如果你还不了解多重背包可以先阅读深入剖析多重背包问题(上篇)深入剖析多重背包问题(下篇)

完全背包问题

种物品和一个容量是 的背包,每种物品都有无限件可用。第 种物品的体积是 ,价值是。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

完全背包问题和01背包的唯一区别就在于物品的个数,在01背包当中所有的物品只有一件,也就只能使用一次。而在完全背包当中物品可以使用无限多次。

比如下面的4个物品,背包能够承受的最大重量为5,我们应该如何选择,使得我们获得的总价值最大:

物品 重量 价值
A 1 2
B 2 4
C 3 4
D 4 5

这个问题还是比较简单,我们直接从图中看,我们可以选择五个A或者两个B一个A,可以产生最大的收益,最大收益为10。

动态转移方程

在前面的文章完全背包当中我们仔细介绍了完全背包的动态转移方程。我们用一个二位数组dp[i][j]表示当只使用前i个物品且背包容量为j的时候,我们能够获取的最大的收益。

和01背包问题一样首先对于第i个物品,首先需要判断背包是否能够容纳(v[i]表示第i件物品的体积,w[i]表示第i件物品的价值):

  • 如果背包的容量大于等于第i个物品的体积,那我们就有两种选择:
    • 将第i个物品放入背包当中,但是在这里需要注意的一点是完全背包的物品有无数件,因此当我们选择之后我们的转移方程为dp[i][j - v[i]] + w[i],这里不是i-1而是i,因为第i件物品有无数件。
    • 不将第i个物品放入背包当中,那么我们就能够使用容量为j的背包去选择前i - 1个物品,这种情况下我们的最大收益为dp[i - 1][j]
  • 如果背包容量小于第i件物品的体积,我们就不能够选择第i件物品了,这种情况下我们的最大收益为dp[i - 1][j]

基于上面的分析我们可以知道完全背包问题的动态转移方程为:
$$
根据上面的状态转移方程,我们的核心代码如下(其中N表示物品的个数,V表示背包的容量,w[i]表示第i个物品的价值,v[i]表示第i个物品所占的体积):

int backpack() {
  for (int i = 1; i < N; ++i) {
    for (int j = 0; j <= V; ++j) {
        if (j >= v[i]) {
            dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i]);
        }
        else {
            dp[i][j] = dp[i - 1][j];
        }
    }
    }
  return dp[V];
}

但是上面的代码我们可以进行数组优化,优化之后的代码如下(如果你还不是很清楚优化原理的话,你可以阅读完全背包当中的数组优化小节):

int backpack() {
    for (int i = 0; i < N; ++i) {
        for (int j = v[i]; j <= V; ++j) {
            dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
        }
    }
    return dp[V];
}

问题转化

我们知道完全背包问题当中的物品是可以无限次使用的,但是实质上我们不可能拿无限个物品,因为我们的背包容量是有限的,假如我们的背包容量为V物品的体积为v,那么我们能够拿的最大的个数就是:
$T_i = \lfloor\frac{V}{v_i}\rfloor$。

因此完全背包转多重背包的代码如下(进行数组优化之后的代码,如果你还不了解数组的优化,可以先阅读完全背包深入剖析多重背包问题(上篇)深入剖析多重背包问题(下篇)当中数组优化的小节):

#include <iostream>

using namespace std;

#define MAX_LENGTH 2000

int N, V;

int values[MAX_LENGTH];
int volumes[MAX_LENGTH];
int dp[MAX_LENGTH];

void complete_backpack() {
  // 前面两侧循环和正常的 dp 循环一样
  for (int i = 0; i < N; ++i) {
    for (int j = V; j >= volumes[i]; j--) {
      // 这里就是根据背包容量进行限制了 j 肯定要大于等于拿的所有物品的容量
      for(int k = 1; j >= volumes[i] * k; k++) {
        dp[j] = max(dp[j], dp[j - volumes[i] * k] + values[i] * k);
      }
    }
  }
}


int main() {
  cin >> N >> V;
  for (int i = 0; i < N; i++) {
    cin >> volumes[i] >> values[i];
  }
  complete_backpack();
  printf("%d", dp[V]);
  return 0;
}

总结

在本篇文章当中主要介绍了入和将完全背包转化成多重背包,我们可以知道完全背包的时间复杂度为,但是如果将完全背包转化成多重背包之后时间复杂度为,其中M表示平均每个物品能拿的最大的个数,因此可以知道其实不必将完全背包转化成多重背包,但是可以扩展我们的思维。

将完全背包转化成多重背包的最核心的就是背包容量的限制,我们可以通过背包容量有限制这一条件,知道我们能够拿的最大的物品数量,从而将完全背包转化成多重背包问题。


以上就是本篇文章的所有内容了,我是LeHung,我们下期再见!!!更多精彩内容合集可访问项目:https://github.com/Chang-LeHung/CSCore

关注公众号:一无是处的研究僧,了解更多计算机(Java、Python、计算机系统基础、算法与数据结构)知识。

全部评论
看到大家貌似都很关注时间复杂度啊
点赞 回复 分享
发布于 2022-08-30 11:39 陕西

相关推荐

头像
10-13 18:10
已编辑
东南大学 C++
。收拾收拾心情下一家吧————————————————10.12更新上面不知道怎么的,每次在手机上编辑都会只有最后一行才会显示。原本不想写凉经的,太伤感情了,但过了一天想了想,凉经的拿起来好好整理,就像象棋一样,你进步最快的时候不是你赢棋的时候,而是在输棋的时候。那废话不多说,就做个复盘吧。一面:1,经典自我介绍2,项目盘问,没啥好说的,感觉问的不是很多3,八股问的比较奇怪,他会深挖性地问一些,比如,我知道MMU,那你知不知道QMMU(记得是这个,总之就是MMU前面加一个字母)4,知不知道slab内存分配器-&gt;这个我清楚5,知不知道排序算法,排序算法一般怎么用6,写一道力扣的,最长回文子串反问:1,工作内容2,工作强度3,关于友商的问题-&gt;后面这个问题问HR去了,和中兴有关,数通这个行业和友商相关的不要提,这个行业和别的行业不同,别的行业干同一行的都是竞争关系,数通这个行业的不同企业的关系比较微妙。特别细节的问题我确实不知道,但一面没挂我。接下来是我被挂的二面,先说说我挂在哪里,技术性问题我应该没啥问题,主要是一些解决问题思路上的回答,一方面是这方面我准备的不多,另一方面是这个面试写的是“专业面试二面”,但是感觉问的问题都是一些主管面/综合面才会问的问题,就是不问技术问方法论。我以前形成的思维定式就是专业面会就是会,不会就直说不会,但事实上如果问到方法论性质的问题的话得扯一下皮,不能按照上面这个模式。刚到位置上就看到面试官叹了一口气,有一些不详的预感。我是下午1点45左右面的。1,经典自我介绍2,你是怎么完成这个项目的,分成几个步骤。我大致说了一下。你有没有觉得你的步骤里面缺了一些什么,(这里已经在引导我往他想的那个方向走了),比如你一个人的能力永远是不够的,,,我们平时会有一些组内的会议来沟通我们的所思所想。。。。3,你在项目中遇到的最困难的地方在什么方面4,说一下你知道的TCP/IP协议网络模型中的网络层有关的协议......5,接着4问,你觉得现在的socket有什么样的缺点,有什么样的优化方向?6,中间手撕了一道很简单的快慢指针的问题。大概是在链表的倒数第N个位置插入一个节点。————————————————————————————————————10.13晚更新补充一下一面说的一些奇怪的概念:1,提到了RPC2,提到了fu(第四声)拷贝,我当时说我只知道零拷贝,知道mmap,然后他说mmap是其中的一种方式,然后他问我知不知道DPDK,我说不知道,他说这个是一个高性能的拷贝方式3,MMU这个前面加了一个什么字母我这里没记,别问我了4,后面还提到了LTU,VFIO,孩子真的不会。
走呀走:华子二面可能会有场景题的,是有些开放性的问题了
点赞 评论 收藏
分享
牛油果甜奶昔:别的先不说,牛客还能内推护士?
点赞 评论 收藏
分享
评论
1
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务