【有书共读】机器学习与优化读书笔记 02

    机器学习(ML)的目标是用一个训练实例集来建立系统,这个系统能够正确地泛化到新实例上,这些新的实例是在学习阶段没有见过的,但来自同一个问题。

ML 的学习即是为一个灵活的模型找到合适的参数值,这些参数要使得实例集上的差度量自动最小化, 同时也需要避免复杂的模型,从而增加正确泛化的概率。
这个系统的输出值可以是一个类(分类问题),或者是一个数值(回归问题)。在某些情况下,为了增加可用性,可以输出某一类的概率。

只要我们有丰富的有代表性的数据,我们可以在不知道背景知识的情况下建立一个准确的分类器。相较于基于专业领域知识的手动构建的系统,这是一个了不起的改变。
ML是非常强大的,但是它要求严格的方法(一种ML的“教育学”)。可以肯定的是,不要在训练集上测试性能,因为这是弥天大罪:重用验证数据将导致过于乐观的估计。如果实例非常稀缺,你可以使用交叉验证这一手段来炫耀你是个ML专家。

为了安全起见,也为了置身于ML的天堂,你应该保留一些实例用于测试,仅在最后测试性能的时候使用它们。
测试一个模型的性能的方法并不是唯一的,不同类型的误差可能造成不同的损失。确率、精确率和召回率是二元分类中性能度量的一些可能的选择,对于更多类别的情况,一个混淆矩阵可以给出全部信息。



#读书笔记##笔记##机器学习#
全部评论

相关推荐

真tmd的恶心,1.面试开始先说我讲简历讲得不好,要怎样讲怎样讲,先讲背景,再讲技术,然后再讲提升多少多少,一顿说教。2.接着讲项目,我先把背景讲完,开始讲重点,面试官立即打断说讲一下重点,无语。3.接着聊到了项目的对比学习的正样本采样,说我正样本采样是错的,我解释了十几分钟,还是说我错的,我在上一家实习用这个方法能work,并经过市场的检验,并且是顶会论文的复现,再怎么不对也不可能是错的。4.面试官,说都没说面试结束就退出会议,把面试者晾在会议里面,丝毫不尊重面试者难受的点:1.一开始是讲得不好是欣然接受的,毕竟是学习。2.我按照面试官的要求,先讲背景,再讲技术。当我讲完背景再讲技术的时候(甚至已经开始蹦出了几个技术名词),凭什么打断我说讲重点,是不能听出人家重点开始了?这也能理解,每个人都有犯错,我也没放心上。3.我自己做过的项目,我了解得肯定比他多,他这样贬低我做过的项目,说我的工作是错误的,作为一个技术人员,我是完全不能接受的,因此我就和他解释,但无论怎么解释都说我错。凭什么,作为面试官自己不了解相关技术,别人用这个方式work,凭什么还认为这个方法是错的,不接受面试者的解释。4.这个无可厚非,作为面试官,不打招呼就退出会议,把面试者晾着,本身就是有问题。综上所述,我现在不觉得第一第二点也是我的问题,面试官有很大的问题,就是专门恶心人的,总结面试官说教,不尊重面试者,打击面试者,不接受好的面试者,技术一般的守旧固执分子。有这种人部门有这种人怎么发展啊。最后去查了一下,岗位关闭了。也有可能是招到人了来恶心人的,但是也很cs
牛客20646354...:招黑奴啊,算法工程师一天200?
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务