【有书共读】《深入理解计算机系统》第四章

本章将介绍处理器硬件的设计,处理器是计算机内最复杂的系统之一。处理器必须执行一系列指令,每条指令执行某个简单操作,指令被编码为由一个或多个字节序列组成的二进制格式。处理器支持的指令和指令的字节级编码称为它的指令集体系结构(Instruction-Set Architecture, ISA)。
1.Y86-64指令体系结构
定义一个指令集体系结构——Y86-64,它的数据类型,指令和寻址方式比x86-64都要少一些。
每条指令需要1~10个字节不等,第一个字节表明指令的类型。这个字节高4位是代码部分,低4位是功能部分,通过代码部分确定指令长度,从而以指令为单位划分字节序列;通过功能部分确定具体的指令;通过寄存器指示符字节确定指令中涉及的寄存器;通过转换数值部分以小段法编码的数字来确定立即数、偏移量、绝对地址等值。
指令集的字节编码必须有唯一的解释,否则就不是一个合法的字节序列。
                                                            图4.1 Y86-64指令集
2.逻辑设计和硬件控制语言HCL
实现一个数字系统需要三个主要组成部分:组合逻辑,存储器单元,时钟信号。
逻辑门是数字电路的基本计算元素,它们产生的输出,等于它们输入位值的某个布尔函数。将很多逻辑门组合成一个网,就能构建计算块,称为组合电路。(相当于一个表达式)
算术/逻辑单元(ALU)是一种很重要的组合电路,这个电路有三个输入:两个数据输入及一个控制输入。根据控制输入的设置,电路会对数据输入执行不同的算术或逻辑操作。
存储器和时钟
存储设备都是由同一个时钟控制,时钟是一个周期性信号,决定了什么时候要把新值加载到设备中。
大多数时候,寄存器都保持在稳定状态(用x表示),产生的输出等于它的当前状态。信号沿着寄存器前面的组合逻辑传播,这时,产生了一个新的寄存器输入(用y表示),但只要时钟是低电位的,寄存器的输出就仍然保持不变。当时钟变成高电位的时候,输入信号才加载到寄存器中,成为下一个状态y,直至下一个时钟的上升沿。
寄存器是作为电路不同部分中的组合逻辑之间的屏障。每当每个时钟到达上升沿时,值才会从寄存器的输入传送到输出。
寄存器文件(通用寄存器组成的逻辑块) 有两个读端口,还有一个写端口。电路可以读两个程序寄存器的值,同时更新第三个寄存器的状态。每个端口都有一个地址输入,表明选择哪个程序寄存器
3.Y86-64的顺序实现
通常,我们将指令包含的各种操作组织成某个特殊的阶段序列,所有指令遵循统一的序列。
  • 取指(fetch)
    取值阶段从存储器读取指令字节,放到指令存储器(CPU中)中,地址为程序计数器(PC)的值。
    它按顺序的方式计算当前指令的下一条指令的地址(即PC的值加上已取出指令的长度)
  • 译码(decode)
    ALU从寄存器文件(通用寄存器的集合)读入最多两个操作数。(即一次最多读取两个寄存器中的内容)
  • 执行(execute)
    在执行阶段会根据指令的类型,将算数/逻辑单元(ALU)用于不同的目的。对其他指令,它会作为一个加法器来计算增加或减少栈指针,或者计算有效地址,或者只是简单地加0,将一个输入传递到输出。
    条件码寄存器(CC)有三个条件位。ALU负责计算条件码新值。当执行一条跳转指令时,会根据条件码和跳转类型来计算分支信号cnd。
  • 访存(memory)
    访存阶段,数据存储器(CPU中)读出或写入一个存储器字。指令和数据存储器访问的是相同的存储器位置,但是用于不同的目的。
  • 写回(write back)
    写回阶段最多可以写两个结果到寄存器文件。寄存器文件有两个写端口。端口E用来写ALU计算出来的值,而端口M用来写从数据存储器中读出的值。
  • 更新PC(PC update)
    根据指令代码和分支标志,从前几步得出的信号值中,选出下一个PC的值。
    我们以SEQ(sequential 顺序的)处理器为例讲解CPU的基本原理。每个时钟周期上,SEQ执行处理一条完整指令所需的所有步骤。不过这需要一个很长的时钟周期时间,因此时钟周期频率会低到不可接受。

                                                                                                                                      
                                                                                                                                                       图4.2  SEQ抽象视图
3.Y86-64的流水线实现
为了设计出一个高效,流水线化的Y86-64ISA处理器,需要调整SEQ中五个阶段的顺序,使更新PC在一个时钟周期开始时执行,修改后的设计称为SEQ+。SEQ到SEQ+中对状态单元的改进称为电路重定时,通常用它来平衡一个流水线系统中各个阶段之间的延迟。在SEQ+各个阶段间插入流水线寄存器,并对信号重新排列,得到PIPE-处理器。

流水线冒险
使用流水线技术,当相邻指令间存在相关时会导致出现问题。
这些相关有:
1、数据相关:下一条指令会用到这一条指令计算出的结果
2、控制相关:一条指令要确定下一条指令的位置,例如在执行跳转、调用或返回指令时。
这些相关可能会导致流水线产生计算错误,称为冒险。
用暂停来避免数据冒险
暂停(stalling)是避免冒险的一种常用技术。让一条指令停顿在译码阶段,直到产生它的源操作数的指令通过了写回阶段,这样我们的处理器就能避免数据冒险。
异常处理
异常可以由程序执行从内部产生,也可以由某个外部信号从外部产生。
简单的三种内部异常:
1、halt指令
2、非法指令
3、访问非法地址
(还有一些外部异常:网口收到新包、用户点击鼠标等)
在简化的ISA模型中,当处理器遇到异常时,会停止,设置适当的状态码,且应该是到异常指令之前的所有指令都已经完成,而其后的指令都不应该对程序员可见的状态产生任何影响。在一个更完整的设计中,处理器会继续调用异常处理程序,这是操作系统的一部分。
全部评论

相关推荐

不愿透露姓名的神秘牛友
05-29 22:21
Offer1:小马智行,深圳,测试开发工程师,17.0k*16.0,Offer2:追觅科技,深圳,嵌入式工程师,18.0k*15.0,
嵌软狗都不学:各位base深圳的同事,作为也是并肩作战的一员,今天想站在管理视角,和大家开诚布公地聊一聊:从近几个月的上下班数据对比看来,我们发现一个明显的差异:深圳同事的在岗时间普遍比苏州同事短。很多深圳同事早上9点之后才到公司,晚上不到 20 点就下班了;而总部那边,20点半甚至 22 点后还有不少同事在办公室忙碌,特别是研发团队,加班更是常态。相信去过苏州的同事,对这种场景都不陌生。我很好奇,这是因为苏州工作任务太重还是咱们深圳同事效率真的高到能在更短时间内完成工作?MOVA在深圳成立分公司是为了吸引更优秀的人才贡献更多更高质的价值,公司管理层给我反馈的是深圳招到的多是行业的专家大拿,大部分都是薪资比苏州高的,而且我们办公的租金等也远高于苏州的..MOVA虽脱胎于强壮的集团母体不久,各业务板块尚未实现全面盈利,虽说公司管理层目光长远,不纠结当下的人才投入,但行业内的普遍标准是,员工创造的价值要达到公司雇佣成本的 15 倍以上。大家不妨自我审视一下,自己是否达到了这个标准?如果是抱着划水、按时打卡走人拿毛爷爷的心态那不适合来MOVA,那样过下去不但自己过得尴尬也会影响MOVA这个大船的攻城略地的速度.我并非鼓励大家盲目加班,而是倡导高效工作,拒绝无效忙碌,不要让项目进度因低效受影响,也别把精力浪费在和苏州同事拼打卡时长上,提倡更高的人效比;考虑到两地地域和交通差异,相信大家会找最适合自己发挥的工作方式(比如按时下班后1小时到家晚饭后继续未竟工作等..)大家在遵守公司规章的情况下尽情地体现自己的能力价值,为MOV!和深圳公司争光我们在这边才能更安心更有信心的工作下去;请客BU长、名部门长、项目管理和各业务单元负责人,全面梳理团队情况,及时评估成员工作负荷与成果质量,坚决清退划水害虫痕疫,践行公司价值观,相互监督,防止管理漏洞及渎职。感谢人家的理解,也请人家多担待我的直言不讳……
点赞 评论 收藏
分享
点赞 评论 收藏
分享
05-03 12:45
西南大学 Java
nsnzkv:你这项目写的内容太多了,说实话都是在给自己挖坑,就算简历过了,后面面试也难受
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客企业服务